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"Whoever has participated in non-trivial research in

any domain of science involving statistical problems

must have encountered the difficulty that none of

the statistical procedures found in the books fits

exactly the practical situation."

– Jerzy Neyman [1].

Here we discuss double/debiased machine learning (DML)

methods for performing inference on average predictive or

causal effects in two important classes of models: partially

linear regression models and interactive regression models. We

also present a general DML method for performing inference

on a low-dimensional target parameter in the presence of high-

dimensional nuisance parameters. Two case studies illustrate

the approach.
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1: Recall that unconfoundedness or

conditional exogeneity is covered in

Chapter 5-Chapter 11.

2: In the book we will use the terms

double/debiased machine learn-

ing, double machine learning and

debiased machine learning inter-

changeably. It generalizes the dou-

ble/debiased Lasso approach to

generic machine learning methods.

9.1 Introduction

We recall the predictive effect question:

▶ How does the predicted value of the outcome,

E[𝑌 | 𝐷, 𝑋],

change if a regressor value 𝐷 increases by a unit, while

regressor values 𝑋 remain unchanged?

This question may have a causal interpretation within any

SEM, where conditioning on 𝑋 is sufficient for identification

of the causal effect of 𝐷 on 𝑌 – that is, in any situation where

unconfoundedness holds.
1

When this condition holds, the

question becomes the causal effect question:

▶ How does the predicted value of the potential outcome,

E[𝑌(𝑑) | 𝑋],

change if we intervene and change the treatment value 𝑑

by a unit, conditional on the observed 𝑋?

Both questions are interesting and useful to ask, depending on

the application. In what follows, we set up double/debiased

machine learning (DML) methods for answering these questions

with data.
2

These statistical inference methods do not distinguish

between the two types of questions, so the methods are equally

applicable to answering both types.

Here we discuss DML methods for performing inference on

average predictive or causal effects in two important classes of

nonlinear regression models. After presenting these two special

cases, we also present a general DML method for performing

inference on a low-dimensional target parameter in the presence

of high-dimensional nuisance parameters.

Current arguments used to formally establish

√
𝑛 asymptotic

normality of DML estimators of target parameters while allow-

ing for the use of general machine learning methods for learning

nuisance parameters make use of two key ingredients. First,

the DML method is based on a Neyman orthogonal representation
of the target parameters. Intuitively, Neyman orthogonality is

the requirement that estimates of the parameters of interest are

locally insensitive to the value of nuisance parameters. This

local insensitivity reduces the spillover of regularization biases

that are inherent in using regularized methods, such as the

machine learning methods discussed in Chapter 8, to learn

nuisance parameters onto the estimation of target parameters.
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Second, DML makes use of cross-fitting: an efficient form of

sample splitting that guards against "own-observation biases"

that may arise from overfitting.

To illustrate the general principles, we provide two case studies.

In the first, we perform inference on the effect of gun ownership

on homicide rates. In the second, we perform inference on the

effect of 401(k) eligibility on financial assets.

9.2 DML Inference in the Partially Linear

Regression Model

We first answer the predictive/causal effect question within the

context of the partially linear regression model (PLM):

𝑌 = 𝛽𝐷 + 𝑔(𝑋) + 𝜖, E[𝜖 | 𝐷, 𝑋] = 0, (9.2.1)

where 𝑌 is the outcome variable, 𝐷 is the regressor of inter-

est, and 𝑋 is a high-dimensional vector of other regressors or

features, called "controls." The coefficient 𝛽 answers the predic-

tive effect question. In this section, we discuss estimation and

construction of confidence intervals for 𝛽. We also provide a

case study in which we examine the effect of gun ownership on

homicide rates.

The PLM allows a part of the regression function, 𝑔(𝑋), to be

fully nonlinear, which generalizes the approach from Chapter 4.

However, the model is still not fully general, because it imposes

additivity in 𝑔(𝑋) and 𝐷. We shall consider a fully unrestricted

model in the case of a binary treatment 𝐷 in Section 9.3. It is

worth pointing out before turning to that setting that the PLM

is not as restrictive as it appears since we can consider explicit

interactions within the partially linear framework.

Remark 9.2.1 (Interactions within PLM) Given a raw treat-

ment and a set of controls, �̄� and𝑍, we can create the technical

treatment 𝐷 := �̄�𝑇(𝑍), where 𝑇(𝑍) is an 𝐿−dimensional dic-

tionary of transformations of 𝑍. For example, 𝑇(𝑍) could be

indicators of various subgroups. We can then consider the

model

𝑌 =

𝐿∑
𝑙=1

𝛽𝑙𝐷𝑙 + 𝑔(𝑍) + 𝜖,
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where E[𝜖 | 𝑍, 𝐷] = 0. We can rewrite this model as

𝑌 = 𝛽𝑙𝐷𝑙 + 𝑔𝑙(𝑋𝑙) + 𝜖, E[𝜖 | 𝐷𝑙 , 𝑋𝑙] = 0,

where 𝑔𝑙(𝑋𝑙) :=
∑
𝑘≠𝑙 𝛽𝑘𝐷𝑘 + 𝑔(𝑍) and 𝑋𝑙 := ((𝐷𝑘)𝑘≠𝑙 , 𝑍). In practice and depending on the

learner, it may be convenient to

treat 𝑔𝑙(𝑋𝑙) = ℎ({𝐷𝑘}𝑘≠𝑙 , 𝑍) as a

flexible function during estimation

rather than impose the structure

𝑔𝑙(𝑋𝑙) :=
∑
𝑘≠𝑙 𝛽𝑘𝐷𝑘 + 𝑔(𝑍).

We therefore obtain exactly a model of the partially linear

form (9.2.1). We can then apply DML methods to learn and

perform inference on each element of (𝛽𝑙)𝐿𝑙=1
or carry out joint

inference (similarly to what we have done in Chapter 4).

In what follows, we employ an operation that "partials-out" 𝑋

from a random variable𝑉 by taking𝑉 as an input and returning

the "residualized" form:

�̃� := 𝑉 − E[𝑉 | 𝑋].

Applying this operation to (9.2.1), we obtain

�̃� = 𝛽�̃� + 𝜖, E[𝜖�̃�] = 0, (9.2.2)

where �̃� and �̃� are the residuals left after predicting 𝑌 and 𝐷

using 𝑋. Specifically, we have that

�̃� := 𝑌 − ℓ (𝑋) and �̃� := 𝐷 − 𝑚(𝑋),

where ℓ (𝑋) and 𝑚(𝑋) are defined as conditional expectations

of 𝑌 and 𝐷 given 𝑋:

ℓ (𝑋) := E[𝑌 | 𝑋] and 𝑚(𝑋) := E[𝐷 | 𝑋].

Here we recall that the conditional expectations of 𝑌 and 𝐷

given 𝑋 are the best predictors of 𝑌 and 𝐷 using 𝑋 under

squared error loss.

The equation E[𝜖�̃�] = 0 above is the Normal Equation for the

population regression of �̃� on �̃�. This equation implies the

following result:

Theorem 9.2.1 (FWL Partialling-Out for Partially Linear

Model) Suppose that 𝑌, 𝑋 , and 𝐷 have bounded second moments.
Then the population regression coefficient 𝛽 can be recovered from
the population linear regression of �̃� on �̃�:

𝛽 := {𝑏 : E

[
(�̃� − 𝑏�̃�)�̃�

]
= 0} = (E[�̃�2])−1

E[�̃��̃�], (9.2.3)

where the second equality and unique definition of 𝛽 follow if 𝐷
cannot be perfectly predicted by 𝑋, i.e. if E[�̃�2] > 0.
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3: Step 1 of the Double/Orthog-

onal ML for the Partially Linear

Model algorithm is the cross-fitting
step. Here, the nuisance parame-

ters - the conditional expectation

functions in this example - are

learned from one set of observa-

tions and then applied to a differ-

ent set of observations to construct

the residualized quantities. Heuris-

tically, this step keeps any overfit-

ting that occurred in estimating the

conditional expectation from feed-

ing through and contaminating the

final estimate of the parameter of

interest. See Section 9.4 for more

discussion.

Thus, 𝛽 can be interpreted as a regression coefficient of residu-
alized 𝑌 on residualized 𝐷, where the residuals are defined by

respectively subtracting the conditional expectation of 𝑌 given

𝑋 and 𝐷 given 𝑋 from 𝑌 and 𝐷. This result generalizes the

FWL from linear models to partially linear models.

Our estimation procedure for 𝛽 in the sample will mimic the

partialling out procedure in the population. We also rely on

cross-fitting (outlined below) to make sure any overfitting in

learning the conditional expectation functions used in construct-

ing the residualized quantity does not spillover to contaminate

the final estimator of the quantity of interest.
3

Double/Orthogonal ML for the Partially Linear Model

1. Partition data indices into random folds of approxi-

mately equal size: {1, ..., 𝑛} = ∪𝐾
𝑘=1
𝐼𝑘 . For each fold

𝑘 = 1, ..., 𝐾, compute ML estimators ℓ̂[𝑘] and �̂�[𝑘] of

the conditional expectation functions ℓ and 𝑚, leav-

ing out the 𝑘-th block of data. Obtain the cross-fitted

residuals for each 𝑖 ∈ 𝐼𝑘 :

�̌�𝑖 = 𝑌𝑖 − ℓ̂[𝑘](𝑋𝑖), �̌�𝑖 = 𝐷𝑖 − �̂�[𝑘](𝑋𝑖).

2. Apply ordinary least squares of �̌�𝑖 on �̌�𝑖 . That is,

obtain �̂� as the root in 𝑏 of the normal equations:

𝔼𝑛[(�̌� − 𝑏�̌�)�̌�] = 0.

3. Construct standard errors and confidence intervals

as in standard least squares theory.

In what follows it will be convenient to use the notation

∥ℎ∥𝐿2 :=
√

E𝑋[ℎ2(𝑋)],

where, as before, E𝑋 computes the expectation over values of

𝑋.

Theorem 9.2.2 (Adaptive Inference on a Target Parameter

in PLM [2]) Consider the PLM model. Suppose that estimators
ℓ̂[𝑘](𝑋) and �̂�[𝑘](𝑋) provide approximations to the best predictors
ℓ (𝑋) and 𝑚(𝑋) that are of sufficiently high-quality:

𝑛1/4(∥ℓ̂[𝑘] − ℓ ∥𝐿2 + ∥�̂�[𝑘] − 𝑚∥𝐿2) ≈ 0.
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Suppose that E[�̃�2] is bounded away from zero; that is, suppose
�̃� has non-trival variation left after partialling out. Suppose other
regularity conditions listed in [2] hold.

Then the estimation error in �̌�𝑖 and �̌�𝑖 has no first order effect on �̂�:
√
𝑛(�̂� − 𝛽) ≈ (𝔼𝑛[�̃�2])−1

√
𝑛𝔼𝑛[�̃�𝜖].

Consequently, �̂� concentrates in a 1/
√
𝑛 neighborhood of 𝛽 with

deviations approximated by the Gaussian law:
√
𝑛(�̂� − 𝛽) a∼ 𝑁(0, V),

where
V = (E[�̃�2])−1

E[�̃�2𝜖2](E[�̃�2])−1.

Remark 9.2.2 (When PLM fails to hold) Even when the PLM

model fails to hold, Theorem 9.2.2 continues to hold when

we directly define 𝛽 as in Eq. 9.2.3 of Theorem 9.2.1 for any

variable triplet (𝑋, 𝐷,𝑌). That is, �̂� is in fact an estimate of

the BLP of �̃� in terms of �̃� regardless of whether the PLM

holds. Per Theorem 9.2.1, this BLP coefficient coincides with

𝛽 in Eq. (9.2.1) whenever the PLM does hold.

Confidence Interval The standard error of �̂� is

√
V̂/𝑛, where

V̂ is an estimator of 𝑉 . The result implies that the confidence

interval [
�̂� − 2

√
V̂/𝑛, �̂� + 2

√
V̂/𝑛

]
covers 𝛽 in approximately 95% of possible realizations of the

sample. In other words, if our sample is not atypical, the interval

covers the truth.

Selecting the Best ML Learners of ℓ and 𝑚. There may be sev-

eral methods that satisfy the quality requirements of Theorem

9.2.2, and we may therefore ask what ML methods we should

use in practice. Consider a collection of ML methods indexed

by 𝑗 ∈ {1, ..., 𝐽}. Our goal would be to select the methods that

minimize an upper bound on the bias of the DML estimator.

The bias of the DML estimator is controlled by the mean square

approximation errors (MSAE):

1

𝐾

𝐾∑
𝑘=1

∥ℓ̂[𝑘] − ℓ ∥2𝐿2
and

1

𝐾

𝐾∑
𝑘=1

∥�̂�[𝑘] − 𝑚∥2𝐿2
. (9.2.4)

Therefore, we can select the best ML method for estimating 𝑚

and the best method for estimating ℓ to minimize the upper
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bound on the bias. We will be using mean square prediction

errors as proxies for MSAEs. MSPEs approximate MSAEs up to

terms that do not depend on 𝑗.

Hence, by doing MSPE minimiza-

tion, we in fact approximately min-

imize MSAEs.

Selection of the Best ML Methods for DML to Minimize

Bias. Consider a set of ML methods enumerated by 𝑗 ∈
{1, ..., 𝐽}.

▶ For each method 𝑗, compute the cross-fitted MSPEs

𝔼𝑛[�̌�2

𝑗 ] and 𝔼𝑛[�̌�2

𝑗 ],

where the index 𝑗 reflects the dependency of residuals

on the method.

▶ Select the ML methods 𝑗 ∈ {1, ..., 𝐽} that give the

smallest MSPEs:

𝑗ℓ = arg min

𝑗
𝔼𝑛[�̌�2

𝑗 ] and 𝑗𝑚 = arg min

𝑗
𝔼𝑛[�̌�2

𝑗 ].

▶ Use the method 𝑗ℓ as a learner of ℓ , and 𝑗𝑚 as a learner

of 𝑚 in the DML algorithm above.

Note that it may well be that different methods provide the

best prediction rules for 𝑌 and 𝐷. By allowing ourselves to

consider multiple methods, we allow finding methods that

perform best for the different tasks which should improve

performance in practice relative to insisting on one fixed, pre-

specified method.

Rather than selecting the single best predictors of 𝑌 and 𝐷, we

can also use residuals to form linear ensembles of ML methods

that minimize MSPEs.

Corollary 9.2.3 The previous inferential result continues to

hold if the best or aggregated prediction rules are used as

estimators �̂� and ℓ̂ of𝑚 and ℓ in the DML algorithm. A simple

sufficient condition is that the number of ML prediction rules

𝐽 over which we aggregate or choose from is fixed (meaning

small in practice).

In practical terms, the result of Corollary 9.2.3 means that we

should only choose among or aggregate over relatively few

ML methods. Otherwise, we may end up overfitting (since

we are "cheating" here by using validation data to form the

aggregator).
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4: Recall that we use the term nui-

sance parameter to name parame-

ters that are not the target parame-

ters. In the PLM, the target param-

eter is 𝛽, and ℓ and 𝑚 are nuisance

parameters.

Remark 9.2.3 (More Technical Condition) A sufficient con-

dition for data dependent selection of which predictor to

use when forming residuals to perform well in theory often

boils down to requiring

√
log 𝐽𝑛−1/4 ≈ 0 for choosing the

single best method and

√
𝐽𝑛−1/4 ≈ 0 when using the linear

aggregation of methods. However, much work in this area is

yet to be formally developed.

Discussion of DML Construction

The partialling out operation causes the moment equations

defining 𝛽 to be Neyman orthogonal. That is, the moment con-

ditions are locally insensitive to perturbations of the nuisance

parameters ℓ and 𝑚.
4

We discussed Neyman orthogonality in

the context of high-dimensional linear regression models in

Chapter 4. We return to and generalize this discussion formally

in Section 9.4. This property alleviates the impact of the bias

in estimation of 𝑚 and ℓ that arises when ML estimators are

applied in high-dimensional settings.

Naive application of machine learning methods directly to

outcome equations may lead to highly biased estimators because

the resulting strategy is not Neyman orthogonal. The lack of

Neyman orthogonality means that estimates of the parameter

of interest are heavily impacted by estimation of the nuisance

parameters. This sensitivity means that any biases in estimation

of 𝑔, which are essentially unavoidable in high-dimensional

estimation, create a non-trivial bias in the estimate of the main

effect. This bias is large enough to cause failure of conventional

inference.

The left panel of Figure 9.1 illustrates the bias arising due to

the use of a non-orthogonal, naive approach for learning 𝛽;

see Remark 9.2.4 for details. Specifically, the figure shows the

behavior of a conventional (non-orthogonal) ML estimator, �̃�,

in the partially linear model in a simple simulation experi-

ment where we learn 𝑔 using a random forest. The 𝑔 in this

experiment is a very smooth function of a small number of

variables, so the experiment is seemingly favorable to the use

of random forests a priori. The histogram shows the simulated

distribution of the centered estimator, �̃� − 𝛽. The estimator is

badly biased, shifted much to the right relative to the true value

𝛽. Furthermore, the distribution of the estimator (approximated

by the blue histogram) is substantively different from a normal

approximation (shown by the red curve) derived under the

assumption that the bias is negligible.
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Figure 9.1: Histograms of centered estimates of 𝛽 from a simulation experiment where random forests are used to

learn nuisance functions. The left panel provides the histogram of �̃� − 𝛽 where �̃� is obtained from a procedure that

does not satisfy Neyman orthgonality; see Remark 9.2.4. The right panel provides the histogram of �̂� − 𝛽 where �̂�
is the DML estimator. In both cases, the same tuning settings are used for random forest estimation of nuisance

parameters.

Remark 9.2.4 (Bias Transmission) The biased performance of

the naive estimator can be explained analytically. The naive

strategy relies on the moment equation:

E[(𝑌 − 𝛽𝐷 − 𝑔(𝑋))𝐷] = 0

to identify 𝛽. Because we do not know 𝑔, we need to use

an estimate of 𝑔 in place of 𝑔. Without ex ante knowing

the specific form of 𝑔, this estimate of 𝑔 will suffer from

bias in finite samples. Unfortunately, the moment condition

E[(𝑌 − 𝛽𝐷 − 𝑔(𝑋))𝐷] = 0 is sensitive to deviations in 𝑔 away

from the true value. Indeed, let us compute the directional

derivative in direction Δ away from the true value:

𝜕𝑡E[(𝑌 − 𝛽𝐷 − 𝑔(𝑋) + 𝑡Δ(𝑋))𝐷]
���
𝑡=0

= E[Δ(𝑋)𝐷] ≠ 0.

The derivative generally does not vanish. The result is bias

in �̂�, even if relatively small, will transmit to the resulting

estimator of 𝛽.

The right panel of Figure 9.1 illustrates the behavior of the

(Neyman) orthogonal DML estimator, �̂�, in the partially linear

model in a simple experiment where we learn nuisance func-

tions 𝑚 and ℓ using random forests. Note that the simulated

data are exactly the same as those underlying the left panel. The

simulated distribution of the centered estimator, �̂� − 𝛽, (given

by the blue histogram) illustrates that the estimator is approxi-

mately unbiased, concentrates around 𝛽, and is approximately

normally distributed. The low bias arises because DML uses
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Neyman orthogonal moment equations.

The DML algorithm also uses a form of sample splitting, called

cross-fitting, to guard against a less obvious source of bias

that may arise when estimation of nuisance parameters results

in overfitting. Heuristically, overfitting simply means that an

estimator has captured not just generalizable signal but also

noise that is idiosyncratic to each observation. The presence

of this idiosyncratic noise in the estimates of the nuisance

functions may then lead to a type endogeneity bias as the

observed estimates of the nuisance functions which are used in

place of the unobserved, true nuisance functions are associated

with the noise in the observations used to learn the nuisance

functions. Cross-fitting guards against this source of bias as

overfitting resulting from learning nuisance functions in one

subsample will not carry over when the nuisance function

estimates are applied on a different, separate subsample. As

it is very hard to ensure that highly complex fitting methods

such as boosting, deep neural networks, and random forests do

not overfit, it is hard to know that their use would not lead to

substantial biases without making use of sample splitting. That

is, if we don’t do sample splitting and the ML estimates overfit,

we may end up with very large biases.

Figure 9.2 illustrates how the bias resulting from overfitting in

the estimation of nuisance functions can cause DML without

sample splitting (i.e. estimation on the full sample using an

estimator that satisfied Neyman orthogonality) to be biased and

how sample splitting eliminates this problem. In the left panel

the histogram shows the finite-sample distribution of the DML

estimator in the partially linear model in a simple simulation

experiment where nuisance parameters are estimated with

overfitting using the full sample, i.e. without sample splitting.

The finite-sample distribution is clearly shifted to the left of the

true parameter value, demonstrating the substantial bias. In the

right panel, the histogram shows the finite-sample distribution

of the DML estimator in the same simulation experiment in the

partially linear model where nuisance parameters are estimated

with sample-splitting using the cross-fitting estimator. Here, we

see that the use of sample-splitting has completely eliminated

the bias induced by overfitting.
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Figure 9.2: Left: DML distribution without sample-splitting. Right: DML distribution with cross-fitting.

Figure 9.3: Witchcraft tables used

by some ML practitioners to tune

parameters. There are no known

theoretical guarantees attached to

this tuning method.

Remark 9.2.5 (On overfitting) Note that we did not make use

of cross-fitting in the context of doing inference for a regres-

sion coefficient in the high-dimensional linear model setting

in Chapter 4. Importantly, we only made use of Lasso with

the plug-in choice for the penalty level 𝜆 in that setting. The

plug-in tuning choice theoretically guarantees that overfitting

is sufficiently well-controlled that sample splitting is not re-

quired. Such refined, theoretically rigorous choices of tuning

parameters are not yet available for other machine learning

methods. Indeed, even when using Lasso, cross-fitting should

be employed if cross-validation, rather than the theoretical

plug-in, is used for selecting 𝜆.

In practice, experienced researchers and machine learning

engineers often use intuition, heuristics, and other empirical

tools (six packs or witchcraft tables, for example) to set the

tuning parameters. While the resulting methods can perform

well for prediction purposes, even modest overfitting can

result in large biases in DML, as illustrated in the simulation

experiment in Figure 9.2. In reality, any data-driven tuning

method, such as cross-validation, is likely to lead to at least

mild overfitting as the same data is being used repeatedly.

Therefore, it is simply safer to rely on sample-splitting in

real settings, especially when using complicated learners, to

make sure overfitting during estimation of our residualized

quantities does not contaminate the estimates of the objects

of interest.
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5: We adapt the basic strategy from

Cook and Ludwig [3] who consider

using suicide rates as a proxy for

gun ownership.

The Notebooks 9.6.1 provide code

for the example.

The Effect of Gun Ownership on Gun-Homicide

Rates

We consider the problem of estimating the effect of gun owner-

ship on the homicide rate.
5

For this purpose, we estimate the

partially linear model:

𝑌𝑖 ,𝑡 = 𝛽𝐷𝑖 ,(𝑡−1) + 𝑔(𝑋𝑖 ,𝑡 , �̄�𝑖 , �̄�𝑡 , 𝑋𝑖 ,0, 𝑌𝑖 ,0, 𝑡) + 𝜖𝑖 ,𝑡 .

𝑌𝑖 ,𝑡 is the log homicide rate in county 𝑖 at time 𝑡. 𝐷𝑖 ,𝑡−1 is the

log fraction of suicides committed with a firearm in county

𝑖 at time 𝑡 − 1, which we use as a proxy for gun ownership,

𝐺𝑖 ,𝑡 , which is not observed. 𝑋𝑖 ,𝑡 is a set of demographic and

economic characteristics of county 𝑖 at time 𝑡. We use �̄�𝑖 to

denote the within county average of 𝑋𝑖 ,𝑡 and �̄�𝑡 to denote the

within time period average of 𝑋𝑖 ,𝑡 . 𝑋𝑖 ,0 and 𝑌𝑖 ,0 denote initial

conditions in county 𝑖. We use 𝑍𝑖 ,𝑡 to denote the set of observed

control variables {𝑋𝑖 ,𝑡 , �̄�𝑖 , �̄�𝑡 , 𝑋𝑖 ,0, 𝑌𝑖 ,0, 𝑡}. The sample covers

195 large United States counties between the years 1980 through

1999, giving us 3900 observations.

Raw control variables 𝑋𝑖 ,𝑡 are from the U.S. Census Bureau

and contain demographic and economic characteristics of the

counties such as features of the age distribution, the income

distribution, crime rates, federal spending, home ownership

rates, house prices, educational attainment, voting patterns,

employment statistics, and migration rates.

The intent here is that parameter 𝛽 is an approximation of

the causal effect of gun ownership, 𝐺𝑖 ,𝑡 , on homicide rates

𝑌𝑖 ,𝑡 , controlling for county-level demographic and economic

characteristics; see Figure 9.4 for a potential DAG representation.

To attempt to flexibly account for fixed heterogeneity across

counties, common time factors, and deterministic time trends,

we include county-level averages, time period averages, initial

conditions, and the time index as additional control variables.

This strategy is related to strategies for addressing latent sources

of heterogeneity via conditioning as in [4]. Finally, for simplicity

in this illustration, we assume that all sources of dependence

are accounted for by observed variables such that we may take

𝜖𝑖 ,𝑡 as independent across counties, 𝑖, and over time, 𝑡.

As a summary statistic we first look at a simple regression

of 𝑌𝑖 ,𝑡 on 𝐷𝑖 ,𝑡−1 without controls. The point estimate is 0.302

with 95% confidence interval, based on the assumption that

𝜖𝑖 ,𝑡 is independent over time and space, ranging from 0.277 to

0.327. These results suggest that increases in gun ownership

rates are associated with (predict) gun homicide rates – if gun
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(a) 𝐺𝑖 ,𝑡

𝐷𝑖 ,𝑡 𝑍𝑖 ,𝑡

𝑌𝑖 ,𝑡

𝐹𝑡 𝐴𝑖

(b) 𝐷𝑖 ,𝑡 = 𝐺𝑖 ,𝑡

𝑍𝑖 ,𝑡

𝑌𝑖 ,𝑡

𝐹𝑡

𝐴𝑖

Figure 9.4: Possible DAG Structure

for the Gun Ownership Example.

Figure (a) provides a relatively gen-

eral DAG structure that could rep-

resent the gun ownership exam-

ple. We include nodes for latent

county specific and time period spe-

cific shocks (𝐴𝑖 and 𝐹𝑡 ). Often such

shocks are accounted for with so-

called "fixed effects." In practice,

estimating models with fixed ef-

fects are typically leverages strong

functional form assumptions. Here,

we instead leverage the different,

though still strong, assumption that

flexibly conditioning on observ-

ables, including time- and county-

specific variables, is sufficient to

account for latent county specific

and time period specific shocks.

Unfortunately, neither the causal

effect of the unobserved 𝐺𝑖 ,𝑡 or

observed 𝐷𝑖 ,𝑡 is identified assum-

ing only structure (a). Figure (b)

allows identification of the average

causal effect 𝐺𝑖 ,𝑡 → 𝑌𝑖 ,𝑡 by impos-

ing 𝐺𝑖 ,𝑡 = 𝐷𝑖 ,𝑡 . To the extent that

we believe𝐺𝑖 ,𝑡 ≈ 𝐷𝑖 ,𝑡 , the structure

in (b) allows us to approximate the

effect of interest. We discuss a fur-

ther generalization in Section 9.A

where we rely on the the assump-

tion that 𝐷𝑖 ,𝑡 is equal to 𝐺𝑖 ,𝑡 plus

an additive, independent measure-

ment error. In this case, the target

parameter 𝛽 will be attenuated rel-

ative to the true causal effect.

ownership increases by 1% the predicted gun homicide rate

goes up by around 0.3% – without controlling for any time

factors or county characteristics.

Since our goal is to estimate the effect of gun ownership after

controlling for a rich set characteristics, we next include the

controls and estimate the model by an array of the modern

regression methods that we’ve learned. Specifically, we con-

sider ten candidate learners for predicting the outcome and for

predicting the target variable. We consider linear models esti-

mated with OLS using no control variables (OLS - No Controls),

using only the raw control variables (OLS - Basic), and using

the raw control variables plus the constructed cross-sectional

and time series averages and initial conditions (OLS - All). The

remaining methods always take as inputs the complete set of

candidate control variables including cross-sectional averages,

time-specific averages, and initial conditions. We use cross-
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validation to choose tuning parameters for Lasso, Ridge, and

Elastic Net. We consider a random forest with the software

default tuning choices and boosted trees constrained to have

depth four. Finally, we consider neural nets with four hidden

layers of 50 nodes each and either dropout or early stopping.

For further training details, refer to the example’s notebooks.

RMSE Y RMSE D

OLS - No Controls 1.0964 1.2106

OLS - Basic 0.4889 0.1269

OLS - All 0.4259 0.1259

Lasso (CV) 0.4625 0.1353

Ridge (CV) 0.5303 0.1448

Elastic Net (CV) 0.4651 0.1339

Random Forest 0.4027 0.1246

Boosted trees - depth 4 0.4018 0.1223

DNN dropout 0.6142 0.7594

DNN early stopping 0.5352 0.1931

.

Table 9.1: Cross-fitted RMSE for

predicting outcome (Y) and vari-

able of interest (D) in the gun illus-

tration.

Before turning to estimation results for 𝛽, we look at estimated

out-of-sample predictive performance in Table 9.1 which reports

cross-fitted root mean square error (RMSE) for the different

procedures we consider. The column RMSE Y gives the RMSE for

predicting the outcome (log gun homicide rate), and the column

RMSE D gives the RMSE for predicting our gun prevalence

variable (log of the lagged firearm suicide rate). Here we see

evidence of the potential relevance of trying several learners

rather than just relying on a single, pre-specified choice. There

are noticeable differences between performance of most of the

learners, with Boosted Trees and Random Forests providing the

best performance for predicting both the outcome and policy

variable.

Table 9.2 presents the estimated effects of the lagged gun owner-

ship rate on the gun homicide rate as well as the corresponding

standard errors. Looking across the results, we see relatively

large differences in estimates. These differences suggest that the

choice of learner has a material impact in this example. Looking

at the measures of predictive performance in Table 9.1, we see

that Random Forest and Boosted trees performed best among

the considered learners, and we also see that their performance

is relatively similar in terms of point estimates of the effect of

the lagged gun ownership rate on the gun homicide rate and

standard errors. Focusing on the Boosted trees row, the point

estimate suggests a 1% increase in the gun proxy is associated
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Estimate Standard Error

OLS - No Controls 0.3018 0.0126

OLS - Basic 0.3539 0.0738

OLS - All 0.2016 0.0570

Lasso (CV) 0.2758 0.0565

Ridge (CV) 0.4607 0.0600

Elastic Net (CV) 0.2944 0.0583

Random Forest 0.0631 0.0524

Boosted trees - depth 4 0.1025 0.0537

DNN dropout 0.2444 0.0125

DNN early stopping 0.4850 0.0492

Best 0.1025 0.0537

Ensemble 0.1079 0.0548

.

Table 9.2: Cross-fit estimates for

the coefficient on our gun control

proxy and standard errors in the

gun illustration.

with around .1% increase in the gun homicide rate, though the

95% confidence interval is relatively wide: (-0.003,0.208).

The final two rows of Table 9.2 provide estimates based on using

ensembles of the individual methods to estimate the nuisance

functions. The row "Best" uses the method with the lowest MSE

as the estimator for ℓ̂ (𝑋) and �̂�(𝑋). In this example, Boosted

trees give the best performances in predicting both 𝑌𝑖 ,𝑡 and

𝐷𝑖 ,𝑡−1, so the results for "Best" and Boosted trees are identical.

The row "Ensemble" uses the linear combination of all ten of

the predictors the produces the lowest MSE for predicting 𝑌𝑖 ,𝑡
or 𝐷𝑖 ,𝑡−1 as the estimator ℓ̂ (𝑋) or �̂�(𝑋) respectively. Here the

results are similar to the results using only Boosted trees, but

differ somewhat due to non-zero linear combination coefficients

on the other learners. In either case, we see mild evidence of

positive effect of our gun ownership proxy on the gun homicide

rate, though the 95% confidence interval includes 0 and small

negative values in both cases.

We also wish to emphasize that this example helps illustrate

the practical importance of considering several learners as it is

generally ex ante unknown which learner will work best and

there are substantial differences between the better performing

learners (random forests, boosted trees, and the two ensemble

methods) and the others both in terms of predictive accuracy

and the results DML estimates and standard errors for the effect

of interest.
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Revisiting the Price Elasticity for Toy Cars

We now revisit again the example from Chapter 0. We are

interested in the coefficient 𝛼 in the PLM:

𝑌 = 𝛼𝐷 + 𝑔(𝑊) + 𝜖,

where 𝑌 is log-reciprocal-sales-rank, 𝐷 is log-price, and 𝑊

are product features. This example makes use of propri-

etary data, so no notebooks are pro-

vided.

In Chapter 4, we let 𝑔(𝑊) = 𝛽′𝑇(𝑊)
be a high-dimensional regression using a transformation that

included powers and interactions. We now employ flexible

nonlinear regression models using DML. We take𝑊 to consist

of indicators for brand and subcategory along with physical

dimensions interacted with missingness indicators, using no

further transformation, leading to a 2083-dimensional feature

vector. We consider inference on 𝛼 using DML with different

choices of learners applied to both 𝑚(𝑊) and 𝑔(𝑊): decision

trees, gradient boosted trees (with 1000 trees), random forests

(with 2000 trees), or a neural network (with two hidden layers

of 200 and 20 neurons, respectively, and ReLU activations).

In Table 9.3, we report the cross-validated 𝑅2
for predicting 𝐷

and 𝑌 with each of the learners along with the resulting DML

point estimate, standard error estimate, and 95% confidence

interval. The first thing we note is that all confidence intervals

indicate a substantial negative effect, with a clear indication

not only of the direction of the effect but also of its overall

magnitude.

Let us first compare these results to the previous ones from

when we last revisited this example in Chapter 4. There we

saw that OLS with varying number of features failed to exclude

0 from the confidence interval and that Double Lasso led to

an interval [-0.099, -0.029]. We can attribute the latter more

negative interval to controlling more for confounding, as we

expect confounding effects to push the apparent price-sales

relationship upward compared to the theorized downward

causal relationship.

Here, we see that with more flexible nonlinear methods we

obtain an even more negative estimate and confidence interval.

This result appears to be consistent with the degree to which we

are able to control for confounders. Lasso has a cross-validated

𝑅2
of 0.09 and 0.32 for predicting 𝑌 and 𝐷, respectively. The

𝑅2
’s in Table 9.3 are substantially larger. That the corresponding

estimates and intervals are also more negative seems to coincide

with our theoretical prediction.
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Figure 9.5: DML estimates of the

price-sales relationship using PLM

with higher-order transformations

of price. Note the exponential scal-

ing in the axes, which transforms

the overall scale back to (non-log)

price and sales (reciprocal sales

rank).

Comparing between the nonlinear methods, this theory appears

to remain consistent. Forest and neural net methods have higher

𝑅2
’s than tree and gradient boosting methods, and, at the

same time, have more negative point estimates and confidence

intervals.

𝑅2

𝐷
𝑅2

𝑌
Estimate Std. Err. 95% CI

Tree 0.40 0.19 -0.109 0.018 [-0.143, -0.074]

Boost 0.41 0.17 -0.102 0.019 [-0.139, -0.064]

Forest 0.49 0.26 -0.134 0.019 [-0.171, -0.096]

NNet 0.47 0.21 -0.132 0.020 [-0.171, -0.093]

Table 9.3: DML estimates of price

elasticity based on different learn-

ers, along with their 𝑅2
for predict-

ing 𝐷 and 𝑌.

Note that just as we can play with transformations in linear

models, we can do the same in the PLM. That is, we can modify

from partial linearity in the univariate 𝐷 to partial linearity in

a multivariate set of transformations, 𝑇(𝐷). We can use this to

investigate potentially non-linear price-sales relationships in

this data. Let us transform 𝐷 using the first 𝑟 (probabilist’s)

Hermite polynomials (applied to a location-scale-standardized

𝐷). We then use DML with neural network learners to learn

the coefficients on these polynomial terms. That is, we estimate

a model of the form

𝑌 =

𝑟∑
𝑗=1

𝛼 𝑗𝑇𝑗(𝐷) + 𝑔(𝑊) + 𝜖

where 𝑇𝑗(𝐷) represents the 𝑗th term in the Hermite polynomial

of order 𝑟.

We plot the resulting estimated functions for 𝑟 = 1, . . . , 4 in
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Figure 9.5. As can be seen, the price-sales relationship seems

to not be exactly linear The relationship being not exactly

linear does not invalidate using a

PLM (in the untransformed univari-

ate 𝐷). It still corresponds to an av-

erage derivative – see Remark 9.3.3

– which can be more interpertable

than nonlinear estimates of a causal

effect.

, as it stabilizes around a flat-then-

decreasing shape for degrees 2, 3, and 4. This shape either

suggests that indeed there is less elasticity at lower price points

(the mean log-price is 3.06) or that we simply failed to account

well for confounding effects at lower price points, which may

be idiosyncratic compared to higher-priced toy trucks.

9.3 DML Inference in the Interactive

Regression Model

DML Inference on APEs and ATEs

We consider estimation of average treatment effects when treat-

ment effects are fully heterogeneous and the treatment variable

is binary. We consider observable variables𝑊 = (𝑌, 𝐷, 𝑋) and

the pair of regression equations:

𝑌 = 𝑔0(𝐷, 𝑋) + 𝜖, E[𝜖 | 𝑋, 𝐷] = 0, (9.3.1)

𝐷 = 𝑚0(𝑋) + �̃�, E[�̃� | 𝑋] = 0, (9.3.2)

where the second regression equation captures that 𝐷 and 𝑋

are confounded. Here 𝑌 is an outcome of interest, 𝐷 ∈ {0, 1} is

a binary policy or treatment variable, and 𝑋 are controls/con-

founding factors. Since 𝐷 is not additively separable in the first

equation, this model is more general than the partially linear

model for the case of binary 𝐷.

A common target parameter of interest in this model is the

average predictive effect (APE),

𝜃0 = E[𝑔0(1, 𝑋) − 𝑔0(0, 𝑋)].

This quantity is the average predictive effect of switching 𝐷 =

0 to 𝐷 = 1. Under ignorability/conditional exogeneity, the

APE coincides with the average treatment effect (ATE) of the

intervention that moves 𝐷 = 0 to 𝐷 = 1.

The confounding factors 𝑋 affect the policy variable via the

propensity score 𝑚0(𝑋) and the outcome variable via the func-

tion 𝑔0(𝐷, 𝑋). Both of these functions are unknown (except

for the case of RCTs, where 𝑚0(𝑋) is known) and potentially

complicated. Fortunately, we can employ ML methods to learn

them.
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6: This representation is known as

"doubly robust" parameterization,

which refers to the fact that 𝜃0 is

recovered whenever the 𝑔 or 𝐻 is

specified correctly. We don’t dwell

on this property here – for us, only

the Neyman orthogonality prop-

erty is important.

Our construction of the efficient estimator for the APE/ATE

will be based upon the relation
6

𝜃0 = E[𝜑0(𝑊)], (9.3.3)

where

𝜑0(𝑊) = 𝑔0(1, 𝑋) − 𝑔0(0, 𝑋) + (𝑌 − 𝑔0(𝐷, 𝑋))𝐻0

and

𝐻0 =
1(𝐷 = 1)
𝑚0(𝑋)

− 1(𝐷 = 0)
1 − 𝑚0(𝑋)

is the Horvitz-Thompson transformation.

Remark 9.3.1 (Regression Adjustment or Propensity Score

Reweighting? Use both) We realize that this representation

encompasses two equally valid representations of the target

parameter: the regression adjusted representation,

𝜃0 = E[𝑔0(1, 𝑋) − 𝑔0(0, 𝑋)],

and the propensity score reweighting representation,

𝜃0 = E[𝑌𝐻0].

Unfortunately neither of these representations is Neyman

orthogonal Recall we introduced Neyman or-

thogonality in Chapter 4. We con-

tinue this discussion formally in

Section 9.4.

, making them unsuitable for plugging-in machine

learning estimators. In sharp contrast, the representation

(9.3.3) is Neyman orthogonal, which implies that we can

readily deploy ML methods for estimation using the empirical

analog of this expression coupled with cross-fitting.

The construction provided in (9.3.1) is equally applicable in

cases where the propensity score P(𝐷 = 1 | 𝑋) is known, as

in stratified randomized experiments, and in cases where the

propensity score is unknown. When the propensity score is

known, the role of regression adjustment in (9.3.1) is to reduce

estimation noise.

We will employ the Neyman orthogonal parameterization and

cross-fitting to construct a high-quality estimator and perform

statistical inference on the target parameter.

DML for APEs/ATEs in IRM

1. Partition sample indices into random folds of ap-

proximately equal size: {1, ..., 𝑛} = ∪𝐾
𝑘=1
𝐼𝑘 . For each

𝑘 = 1, ..., 𝐾, compute estimators �̂�[𝑘] and �̂�[𝑘] of the
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conditional expectation functions 𝑔0 and 𝑚0, leaving

out the 𝑘-th block of data, such that 𝜖 ≤ �̂�[𝑘] ≤ 1 − 𝜖,

and for each 𝑖 ∈ 𝐼𝑘 compute

�̂�(𝑊𝑖) = �̂�[𝑘](1, 𝑋𝑖)− �̂�[𝑘](0, 𝑋𝑖)+(𝑌𝑖− �̂�[𝑘](𝐷𝑖 , 𝑋𝑖))�̂�𝑖

with

�̂�𝑖 =
1(𝐷𝑖 = 1)
�̂�[𝑘](𝑋𝑖)

− 1(𝐷𝑖 = 0)
1 − �̂�[𝑘](𝑋𝑖)

.

2. Compute the estimator

�̂� = 𝔼𝑛[�̂�(𝑊)].

3. Construct standard errors via√
V̂/𝑛, V̂ = 𝔼𝑛[�̂�(𝑊) − �̂�]2,

and use standard normal critical values for inference.

Remark 9.3.2 (Trimming) An important practical issue is

trimming |�̂�𝑖 | so it does not take on very large values. Large

values can occur when estimated propensity scores are near

0 or 1, which may indicate failure of the overlap condition –

Assumption 5.2.2 in Chapter 5 and restated in Theorem 9.3.1

below. In the algorithm above, �̂�𝑖 can take on the largest abso-

lute value of �̄� = 1/𝜖. Therefore, setting 𝜖 = .01 corresponds

to �̄� = 100. While this choice provide a simple rule-of-thumb,

there does not currently seem to be a good theoretical and

practical resolution to the question of how to do trimming.

Exploring this topic further is potentially an interesting area

for more research.

Theorem 9.3.1 (Adaptive Inference on ATE with DML) Sup-
pose conditions specified in [2] hold. In particular, suppose that the
overlap condition holds, namely for some 𝜖 > 0 with probability 1

𝜖 < 𝑚0(𝑋) < 1 − 𝜖.

If estimators �̂�[𝑘](𝐷, 𝑋) and �̂�[𝑘](𝑋) are such that 𝜖 ≤ �̂�[𝑘](𝑋) ≤
1 − 𝜖 and provide sufficiently high-quality approximations to the
best predictors 𝑔0(𝐷, 𝑋) and 𝑚0(𝑋) such that

∥ �̂�[𝑘] − 𝑔0∥𝐿2 + ∥�̂�[𝑘] −𝑚0∥𝐿2 +
√
𝑛∥ �̂�[𝑘] − 𝑔0∥𝐿2 ∥�̂�[𝑘] −𝑚0∥𝐿2 ≈ 0,

then the estimation error in these nuisance parameter has no first
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order effect on �̂�:
√
𝑛(�̂� − 𝜃0) ≈

√
𝑛𝔼𝑛[𝜑0(𝑊) − 𝜃0].

Consequently, the estimator concentrates in 1/
√
𝑛 neighborhood of

𝜃0, with deviations controlled by the Gaussian law:
√
𝑛(�̂� − 𝜃0) a∼ 𝑁(0, V)

where
V = E[(𝜑0(𝑊) − 𝜃0)2].

The condition on the quality of estimators of 𝑔0 and𝑚0 provides

a possibility of "trading off" the quality of each estimator while

retaining the adaptive inference property. The better we estimate

the propensity score𝑚0, the worse our estimate of the regression

function 𝑔0 can be; and vice versa.

DML Inference for GATEs and ATETs

As discussed in Chapter 5, we may also be interested in average

effects for interesting subpopulations such as group ATEs

(GATEs) or average treatment effect on the treated (ATET).

Recall that a GATE is defined as the average treatment effect

within a group:

𝜃0 = E[𝑔0(1, 𝑋) − 𝑔0(0, 𝑋) | 𝐺 = 1],

where 𝐺 is a group indicator. For example, we might be inter-

ested in the impact of a vaccine on teenagers, in which case

we could set 𝐺 = 1(13 ≤ Age ≤ 19), or on older individuals, in

which case we might set 𝐺 = 1(65 ≤ Age).

GATEs are of interest for describing heterogeneity of the average

treatment effects across groups. This parameter also has a

predictive interpretation in a non-causal sense: It measures

the average change in prediction as 𝐷 switches from 0 to 1,

averaging over characteristics of the group 𝐺 = 1.

Another common target parameter ATET:

𝜃0 = E[𝑔0(1, 𝑋) − 𝑔0(0, 𝑋) | 𝐷 = 1].

In business applications, the ATET is often of the interest for

attribution calculations. For example, if the treatment of interest

is having experience with a new product, the ATET captures

the effect of the new product on those that actually received

it.
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DML estimation and inference for GATEs can be carried out

similarly to estimation and inference for the ATE by exploiting

the relation

𝜃0 = E[𝜑0(𝑋) | 𝐺 = 1] = E[𝜑0(𝑋)𝐺]/P(𝐺 = 1).

We provide further detail for DML estimators of GATEs and

ATETs in Section 9.4.

Remark 9.3.3 (Misspecification of PLM as inference on an

overlap-weighted APE) In the case of binary treatment 𝐷 ∈
{0, 1}, the IRM (Eqs. 9.3.1 and 9.3.2) generalizes the PLM of

Section 9.2 (Eq. 9.2.1) by permitting interaction between the

treatment and controls. The PLM, nonetheless, admits a very

simple estimator for the treatment coefficient via partialling

out: simply regress cross-fitted outcome residuals on cross-

fitted treatment residuals, never dividing by propensity scores.

What does this get at, however, when the PLM fails to hold?

Per Remark 9.2.2, we need only consider the BLP of �̃� in

terms of �̃� in the more general IRM. Writing

𝑔0(𝐷, 𝑋) = 𝑔0(0, 𝑋) + 𝐷(𝑔0(0, 𝑋) − 𝑔0(1, 𝑋)),

we see that

�̃� = �̃�(𝑔0(1, 𝑋) − 𝑔0(0, 𝑋)) + 𝜖.

Since E[�̃�2 | 𝑋] = 𝑚0(𝑋)(1 − 𝑚0(𝑋)), we find that the esti-

mand is

𝛽 =
E[𝑚0(𝑋)(1 − 𝑚0(𝑋))(𝑔0(1, 𝑋) − 𝑔0(0, 𝑋))]

E[𝑚0(𝑋)(1 − 𝑚0(𝑋))]
.

That is, the APE on the population reweighted by 𝑚0(𝑋)(1 −
𝑚0(𝑋))/E[𝑚0(𝑋)(1 − 𝑚0(𝑋))]. These weights are known as

overlap weights as they upweight when 𝑚0(𝑋) is close to 1/2
and downweight when 𝑚0(𝑋) is close to 0 or 1.

In the case of a continuous univariate treatment on [0, 1], we

can leverage the same idea of writing 𝑔0(𝐷, 𝑋) as a baseline

plus the effect of𝐷 using the fundamental theorem of calculus:

𝑔0(𝐷, 𝑋) = 𝑔0(0, 𝑋) +
∫

1

0

𝟙[𝐷 > 𝑡]𝑔′
0
(𝑡 , 𝑋)𝑑𝑡, where 𝑔′

0
is the

derivative in the first argument. We can then find that 𝛽
identifies the weighted average derivative

𝛽 = E[𝑤(𝐷, 𝑋)𝑔′
0
(𝐷, 𝑋)]/E[𝑤(𝐷, 𝑋)]
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for nonnegative weights

𝑤(𝑑, 𝑥) = E[�̃�𝕀[𝐷 > 𝑑] | 𝑋 = 𝑥]/ 𝑓 (𝑑 | 𝑥) ≥ 0,

where 𝑓 (𝑑 | 𝑥) is the conditional density of 𝐷 given 𝑋 = 𝑥.

See, e.g., Sec. 2.3.1 of [5]. That is, the PLM coefficient estimates

some average causal effect of increasing every value of 𝐷 by

an infinitesimal amount. However, the population over which

we average may be highly uninterpertable.

The Effect of 401(k) Eligibility on Net Financial

Assets

The Notebooks 9.6.3 provide appli-

cation of DML inference to learn

predictive/causal effects of 401(K)

eligibility on net financial wealth.

Here we re-analyze the impact of 401(k) eligibility on financial

assets (Poterba et al., [6] and [7]). The data covers a short period

a few years after the introduction of 401(k)’s when they were

rapidly increasing in popularity.

The key problem in determining the effect of 401(k) eligibility

is that working for a firm that offers access to a 401(k) plan

is not randomly assigned. To overcome the lack of random

assignment, we follow the strategy developed in [6] and [7].

In these papers, the authors use data from the 1991 Survey of

Income and Program Participation and argue that eligibility for

enrolling in a 401(k) plan in this data can be taken as exogenous

after conditioning on a few observables of which the most

important for their argument is income.

The basic idea of their argument is that, at least around the time

401(k)’s initially became available, people were unlikely to be

basing their employment decisions on whether an employer

offered a 401(k) but would instead focus on income and other

aspects of the job. Compare this argument to the one

given below using DAGs.

Following this argument, whether one is

eligible for a 401(k) may then be taken as exogenous after ap-

propriately conditioning on income and other control variables

related to job choice.

A key component of the argument underlying the exogeneity

of 401(k) eligibility is that eligibility may only be taken as

exogenous after conditioning on income and other variables

related to job choice that may correlate with whether a firm offers

a 401(k). [6] and [7] and many subsequent papers adopt this

argument but control for parsimonious, pre-specified functions

of what they deem to be relevant characteristics. One might

wonder whether such specifications are able to adequately

control for income and other related confounders. At the same

time, the power to learn about treatment effects decreases as
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𝑌
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𝐷

𝑋

𝑌

𝐹

𝐷

𝑋

𝑌

𝐹

𝑈

Figure 9.6: Three Causal DAGs for

analysis of the 401(K) example in

which adjusting for 𝑋 is a valid

identification strategy. The bottom

figure encompasses the other two

as special cases.

7: Defined as the sum of IRA

balances, 401(k) balances, check-

ing accounts, U.S. saving bonds,

other interest-earning accounts in

banks and other financial institu-

tions, other interest-earning assets

(such as bonds held personally),

stocks, and mutual funds less non-

mortgage debt.

8: Employers often offer a benefit

where they will match a proportion

of an employee’s contribution to

their 401k, up to a limit. The limit is

referred to as the employer match

amount.

one allows more flexible models. The principled use of flexible

ML tools offers one resolution to this tension.

In what follows, we use net financial assets
7

as the outcome

variable, 𝑌, in the analysis. The treatment variable, 𝐷, is an

indicator for being eligible to enroll in a 401(k) plan. The vector of

raw covariates, 𝑋 , consists of age, a self-reported male indicator,

income, family size, years of education, a marital status indicator,

a two-earner status indicator, a defined benefit pension status

indicator, an IRA participation indicator, and a home ownership

indicator.

It is useful to think about a causal diagram that represents

our thinking about identification in this example. You can explore these DAG struc-

tures in the Notebooks 9.6.2.

In Figure 9.6,

we provide three example DAGs for 𝑌, the outcome; 𝐷, the

401(K) eligibility offer which depends on firm characteristics,

𝐹, which are not observed; and 𝑋, the worker characteristics.

In one structure, 𝐹 determines the workers characteristics (via

the hiring decision), so we have 𝐹 → 𝑋. In another structure,

workers determine the characteristics of the company they

choose to work at, 𝑋 → 𝐹. Finally, in the last structure 𝐹, 𝑋,

and 𝐷 are jointly determined by a set of latent factors𝑈 . In any

of these cases, 𝑋 is a valid adjustment set because it is the only

parent of 𝑌 (other than 𝐷).

It is also useful to consider structures that would break down

the identification strategy. We illustrate two such structures in

Figures 9.7 and 9.8. In these figures, we introduce a node for the

employer match amount, 𝑀,
8

which could mediate the effect

of 401(k) eligibility and have an important effect on financial

wealth.
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𝐷

𝑋

𝑌

𝑀

𝐹

𝑈

Figure 9.7: A DAG Structure where

adjusting for 𝑋 is not sufficient for

identifying the causal effect from

𝐷 to𝑌. If there were no arrow from

𝐹 to 𝑀, adjusting for 𝑋 would suf-

ficient.

𝐷

𝑋

𝑌

𝑀

𝐹

𝑈

Figure 9.8: Another DAG Structure

where adjusting for 𝑋 is not suffi-

cient for identifying the causal ef-

fect from 𝐷 to 𝑌. Here the latent

confounder𝑈 affects all variables,

so even in the absence of an arrow

connecting 𝐹 to 𝑀, causal effects

cannot be determined after adjust-

ing for 𝑋. The presence of such la-

tent confounders is always a threat

to causal interpretability of any ob-

servational study.

In Figure 9.7, we suppose that 𝑀 is determined by unobserved

firm characteristics, 𝐹, and worker characteristics,𝑋 . In this case,

adjustment for𝑋 is not sufficient for identifying the causal effect

from 𝐷 to 𝑌 as there is a path from latent firm characteristics,

which are related to the treatment, to the outcome that is not

closed by 𝑋 . However, if 𝑀 is determined solely by𝐷 and 𝑋 , so

the red arrow is erased, adjustment for𝑋 is sufficient. Therefore,

interpreting the target parameter of our estimation strategy as

a causal effect is only valid if the match amount is independent

of 𝐹 given 𝐷 and 𝑋 , that is, if there is no arrow from 𝐹 to 𝑀 in

the graph. Otherwise, the default interpretation is that we are

estimating predictive effects of 401(k) eligibility.

In the second example, Figure 9.8, we maintain the assumption

that 𝑀 is independent of 𝐹 given 𝐷 and 𝑋 by eliminating the

arrow between nodes 𝐹 and 𝑀. However, we now allow for

the possibility that latent variables𝑈 have a direct effect on 𝑌.

That is, we have an unobserved confounder or omitted variable.

In this example, such a counfounder may be unobserved risk

preferences that relate to an individual’s preference over jobs,

an individual’s characteristics, and also have direct effects on

savings decisions not channeled purely through observed indi-

vidual or job characteristics. In general, the possibility of latent

confounders always poses a challenge to obtaining estimates of

causal effects in non-experimental data. The presence or absence

of latent confounders cannot be determined solely from the

data in general, and thus their presence must be argued against
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Lasso Tree Forest Boost Best Ensemble

A. Partially Linear Regression Model

Estimate 9418 8634 9112 8859 8859 9051

Std. Error (1476) (1303) (1281) (1321) (1321) (1315)

RMSE D 0.447 0.457 0.459 0.443 0.443 0.443

RMSE Y 58242 56819 55385 54153 54153 53917

B. Interactive Regression Model

Estimate 8860 7856 8349 7871 8204 8146

Std. Error (1347) (1250) (1502) (1157) (1144) (1142)

RMSE D 0.448 0.457 0.459 0.443 0.443 0.443

RMSE Y 58300 54866 57293 55112 54866 53804

Note: Estimated ATE and standard errors from a partially linear model

(Panel A) and heterogeneous effect model (Panel B) based on orthogonal

estimating equations. Column labels denote the method used to estimate

nuisance functions. For Lasso, we report results based on using ℓ1

penalized logistic regression to estimate E[𝐷 |𝑋]. The first row provides

the point estimate of the coefficient on 𝐷 in the PLM in Panel A and

of the ATE in Panel B, and the second row provides the standard error.

Rows RMSE D and RMSE Y respectively report the cross-fitted RMSE

for predicting 𝐷 and 𝑌.

Table 9.4: Estimated Effect of 401(k)

Eligibility on Net Financial Assets

based on scientific and institutional knowledge in different

contexts. See, e.g., discussion in the original papers, [6] and [7],

underlying this example. As in the previous example, we must

interpret our estimates as predictive effects of 401(k) eligibility

if we believe the connection from𝑈 to 𝑌 exists.

In Table 9.4, we report DML estimates of ATE of 401(k) eligibility

on net financial assets both in the partially linear model and

the interactive regression model allowing for heterogeneous

treatment effects. To reduce the disproportionate impact of

extreme propensity score weights in the interactive model, we

trim the propensity scores at 0.01 and 0.99.

Turning to the results, it is first worth noting that when no

controls are used, the estimated ATE of 401(k) eligibility on net

financial assets is $19,559 with an estimated standard error of

1413. Of course, this number is not a valid estimate of the causal

effect of 401(k) eligibility on financial assets if there are neglected

confounding variables as suggested by [6] and [7]. When we turn

to the estimates that flexibly account for confounding reported

in Table 9.4, we see that they are substantially attenuated

relative to this baseline that does not account for confounding,

suggesting much smaller causal effects of 401(k) eligibility on

financial asset holdings.
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9: We have done some informal

simulations to assess the impact

of this threat using the that firms

match up to 5% of employees’

salary. In this scenario, we estimate

the size of the bias to be in the ball

park of 10%. Given this, we believe

the results reported here are reason-

able approximations to the causal

effects.

It is interesting and reassuring that the results obtained from

the different flexible methods are broadly consistent with each

other. Given that the predictive performance of the methods

is relatively similar, this similarity is consistent with the the-

ory that suggests that results obtained through the use of

orthogonal estimating equations and any method that provides

sufficiently high-quality estimates of the necessary nuisance

functions should be similar. Finally, it is interesting that these

results are also broadly consistent with those reported in the

original work of [6] and [7] which used a simple, intuitively-

motivated functional form, suggesting that this intuitive choice

was sufficiently flexible to capture much of the confounding

variation in this example.

Finally, we can conclude the discussion with a more sobering

note that there are credible deviations in the graph structure (e.g.

unobserved firm characteristics may affect the match amount)

that challenge causal interpretation of the estimates. One ap-

proach to dealing with such deviations would be to conduct

thorough sensitivity analysis.
9

We discuss an approach to

sensitivity analysis in the DML framework in Chapter 12.

9.4 Generic Debiased (or Double)

Machine Learning

Key Ingredients

As a general framework, we consider DML estimation and

inference based upon a method-of-moments estimator for some

low-dimensional target parameter 𝜃0 based upon the empirical

analog of the moment condition

E[𝜓(𝑊 ;𝜃0, 𝜂0) = 0]. (9.4.1)

In (??),𝜓 is the score function,𝑊 denotes a data vector,𝜃0 denotes

the true value of a low-dimensional parameter of interest, and

𝜂 denotes nuisance parameters with true value 𝜂0.

The first key input of the generic DML procedure is using

a score function 𝜓(𝑊 ;𝜃, 𝜂) such that (i)

M(𝜃, 𝜂) = E[𝜓(𝑊 ;𝜃, 𝜂)]
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identifies 𝜃0 when 𝜂 = 𝜂0 – that is,

M(𝜃, 𝜂0) = 0 if and only if 𝜃 = 𝜃0−

and (ii) the Neyman orthogonality condition –

𝜕𝜂M(𝜃0, 𝜂)
���
𝜂=𝜂0

= 0 − . (9.4.2)

is satisfied.

Here, (9.4.2) ensures that the moment condition (9.4.1) used to

identify and estimate 𝜃0 is insensitive to small perturbations of

the nuisance function 𝜂 around 𝜂0.

Remark 9.4.1 The orthogonality condition is named after

Neyman [8], because he was the first to propose it in the

context of parametric models with nuisance parameters.

Using a Neyman orthogonal score eliminates the first order

biases arising from the replacement of 𝜂0 with a ML estimator

�̂�0. Eliminating this bias is important because estimators �̂�0 must

be heavily regularized in high-dimensional settings, so these

estimators will be biased in general. The Neyman orthogonality

property is responsible for the adaptivity of these estimators –

namely, their approximate distribution will not depend on the

fact that the estimate �̂�0 contains error as long as the error is

sufficiently mild.

Remark 9.4.2 (Definition of the Derivative) The derivative 𝜕𝜂
denotes the pathwise (Gateaux) derivative operator. Formally

it is defined via usual derivatives taken in various directions:

Given any "admissible" direction Δ = 𝜂 − 𝜂0 and scalar

deviation amount 𝑡, we have that

𝜕𝜂M(𝜃, 𝜂)[Δ] := 𝜕𝑡M(𝜃, 𝜂 + 𝑡Δ)
���
𝑡=0

.

The statement

𝜕𝜂M(𝜃0, 𝜂0) = 0

means that 𝜕𝜂M(𝜃0, 𝜂0)[Δ] = 0 for any admissible direction

Δ. The direction Δ is admissible if 𝜂0 + 𝑡Δ is in the parameter

space for 𝜂 for all small values of 𝑡.
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The second key input is the use of high-quality machine

learning estimators of the nuisance parameters. A sufficient

condition in the examples given includes the requirement

𝑛1/4∥�̂� − 𝜂0∥𝐿2 ≈ 0.

Different structured assumptions on 𝜂0 allow us to use different

machine-learning tools for estimating 𝜂0. For instance,

1) approximate sparsity for 𝜂0 with respect to some dic-

tionary calls for the use of Lasso, post-Lasso, or other

sparsity-based techniques;

2) well-approximability of 𝜂0 by trees calls for the use of

regression trees and random forests;

3) well-approximability of 𝜂0 by sparse deep neural nets

calls for the use of ℓ1-penalized deep neural networks;

4) well-approximability of 𝜂0 by at least one model men-

tioned in 1)-3) above calls for the use of an ensemble/best

choice method over the estimation methods mentioned

in 1)-3).

There are performance guarantees for most of these ML methods

that make it possible to satisfy the sufficient rate condition

𝑛1/4∥�̂� − 𝜂0∥𝐿2 ≈ 0. We note that many of these convergence

guarantees rely on constructions and tuning choices that do

not necessarily align with the way these methods are often

applied in practice. There thus remains more work to be done

in understanding the behavior of ML estimators. Finally, the

use of Ensemble and best choice methods ensures that the

performance guarantee is no worse than the performance of

the best method.

The third key input is to use sample splitting were nuisance

functions are estimated on different data than are used in

their evaluation when producing the estimator of the main

parameter 𝜃0. The use of sample splitting allows us to avoid

biases arising from overfitting.

Overfitting can easily occur when using highly complex fitting

methods such as boosting, random forests, deep nets, ensem-

bles, and other hybrid machine learning methods. We may

heuristically think of overfitting as capturing noise that is par-

ticular to the observations used to fit a model in addition to

signal. Using overfit estimates of nuisance parameters obtained
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using the same data as used to estimate the target parameter

then heuristically leads to estimation error in these parameters

being correlated to outcomes which introduces a type of bias.

This bias can be very large, as illustrated in Figure 9.2. We

specifically use cross-fitted forms of the empirical moments, as

detailed in the Generic DML Algorithm below, in estimation

of 𝜃0 to avoid this problem.

Neyman Orthogonal Scores for Regression

Problems

Scores for the Partially Linear Regression Model. In the PLM,

we employ the score function

𝜓(𝑊 ;𝜃,𝜂) :=

{𝑌 − ℓ (𝑋) − 𝜃(𝐷 − 𝑚(𝑋))}(𝐷 − 𝑚(𝑋)),
(9.4.3)

where 𝑊 = (𝑌, 𝐷, 𝑋) are observable variables, and 𝜂 is the

nuisance parameter 𝜂 = (ℓ , 𝑚) with true value 𝜂0 = (ℓ0, 𝑚0).
Here, ℓ and 𝑚 are square-integrable functions mapping the

support of 𝑋 to ℝ whose true values are given by

ℓ0(𝑋) = E[𝑌 | 𝑋], 𝑚0(𝑋) = E[𝐷 | 𝑋].

The score above is Neyman orthogonal by elementary calcula-

tions delegated to Section 9.B. The objects𝑌−ℓ (𝑋) and𝐷−𝑚(𝑋)
in the PLM score function (9.4.3) are also clearly the flexible

analogs of taking residuals from linear models discussed in

Chapter 1.

Scores for Interactive Regression Model. For estimation of the

ATE parameter in the IRM model, we employ the score

𝜓1(𝑊 ;𝜃, 𝜂) := (𝑔(1, 𝑋) − 𝑔(0, 𝑋))
+ 𝐻(𝐷, 𝑋)(𝑌 − 𝑔(𝐷, 𝑋)) − 𝜃,

(9.4.4)

where

𝐻(𝐷, 𝑋) :=
𝐷

𝑚(𝑋) −
(1 − 𝐷)

1 − 𝑚(𝑋) , (9.4.5)

𝑊 = (𝑌, 𝐷, 𝑋) are observable variables, and 𝜂 := (𝑔, 𝑚) is the

nuisance parameter with true value 𝜂0 = (𝑔0, 𝑚0). Here, 𝑔 is a

square-integrable function mapping the support of (𝐷, 𝑋) to ℝ,

and 𝑚 is a function mapping the support of 𝑋 to (𝜀, 1 − 𝜀) for
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some 𝜀 ∈ (0, 1/2). The true values of 𝑔 and 𝑚 are given by

𝑔0(𝐷, 𝑋) = E[𝑌 | 𝐷, 𝑋], 𝑚0(𝑋) = P[𝐷 = 1 | 𝑋]. (9.4.6)

The score above is Neyman orthogonal by elementary calcula-

tions delegated to Section 9.B.

For estimation of GATEs, we use the score

𝜓(𝑊 ;𝜃, 𝜂) := 𝐺
𝑝 𝜓1(𝑊 ;𝜃, 𝜂); (9.4.7)

where 𝐺 denotes the group membership indicator, the nuisance

parameter 𝜂 is (𝑔, 𝑚, 𝑝) with true value 𝜂0 = (𝑔0, 𝑚0, 𝑝0) for 𝑔0

and𝑚0 defined in (9.4.6) and 𝑝0 = P(𝐺 = 1), and 𝜓1 is the score

for the ATE parameter defined in (9.4.4).

For estimation of the ATET parameter, we use the score

𝜓(𝑊 ;𝜃, 𝜂) := 𝐻(𝐷, 𝑋)𝑚(𝑋)
𝑝
(𝑌 − 𝑔(0, 𝑋)) − 𝐷𝜃

𝑝
, (9.4.8)

where 𝐻(𝐷, 𝑋) is given in (9.4.5), and 𝜂 = (𝑔, 𝑚, 𝑝) is the

nuisance parameter with the true value 𝜂0 = (𝑔0, 𝑚0, 𝑝0) for

𝑔0 and 𝑚0 defined in (9.4.6) and 𝑝0 = P(𝐷 = 1). Note that this

score does not require estimating 𝑔0(1, 𝑋).

The scores for GATEs and ATET can be shown to be Neyman

orthogonal by calculations similar to those in Section 9.B.

The DML Inference Method

We assume that we have a sample {𝑊𝑖}𝑛𝑖=1
, modeled as i.i.d.

copies of random variable𝑊 , whose law is determined by the

probability measure 𝑃.

Generic DML Algorithm

1. Inputs: Provide the data frame {𝑊𝑖}𝑛𝑖=1
, the Neyman

orthogonal score/moment function 𝜓(𝑊, 𝜃, 𝜂) that

identifies the statistical parameter of interest, and

estimation method(s) for 𝜂.

2. Train ML Predictors on Folds: Take a K-fold random

partition (𝐼𝑘)𝐾𝑘=1
of observation indices {1, ..., 𝑛} such

that the size of each fold is about the same. For each

𝑘 ∈ {1, . . . , 𝐾}, construct a high-quality machine

learning estimator �̂�[𝑘] that depends only on the
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subset of data (𝑋𝑖)𝑖∉𝐼𝑘 that excludes the 𝑘-th fold.

3. Estimate Moments: Letting 𝑘(𝑖) = {𝑘 : 𝑖 ∈ 𝐼𝑘}, con-

struct the moment equation estimate

M̂(𝜃, �̂�) = 1

𝑛

𝑛∑
𝑖=1

𝜓(𝑊𝑖 ;𝜃, �̂�[𝑘(𝑖)])

4. Compute the Estimator: Set the estimator �̂� as the

solution to the equation.

M̂(�̂�, �̂�) = 0. (9.4.9)

5. Estimate Its Variance: Estimate the asymptotic vari-

ance of �̂� by

V̂ =
1

𝑛

𝑛∑
𝑖=1

[�̂�(𝑊𝑖)�̂�(𝑊𝑖)′]

− 1

𝑛

𝑛∑
𝑖=1

[�̂�(𝑊𝑖)]
1

𝑛

𝑛∑
𝑖=1

[�̂�(𝑊𝑖)]′,

where

�̂�(𝑊𝑖) = −𝐽−1

0
𝜓(𝑊𝑖 ; �̂�, �̂�[𝑘(𝑖)])

and

𝐽0 := 𝜕𝜃
1

𝑛

𝑛∑
𝑖=1

𝜓(𝑊𝑖 ; �̂�, �̂�[𝑘(𝑖)]).

6. Confidence Intervals: Form an approximate (1− 𝛼)%
confidence interval for any functional 𝑐′𝜃0, where 𝑐

is a vector of constants, as

[𝑐′�̂� ± 𝑧
1−𝛼/2

√
𝑐′V̂𝑐/𝑛],

where 𝑧
1−𝛼/2 is the (1 − 𝛼/2) quantile of the 𝑁(0, 1)

distribution.

Remark 9.4.3 (The Case of Linear Scores) The score for most

of our examples is linear in 𝜃; that is, the score can be written

as

𝜓(𝑊 ;𝜃, 𝜂) = 𝜓𝑏(𝑊 ;𝜂) − 𝜓𝑎(𝑊 ;𝜂)𝜃.
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In such cases the estimator takes the form

�̂� = 𝐽−1

0

1

𝑛

𝑛∑
𝑖=1

𝜓𝑏(𝑊𝑖 ; �̂�[𝑘(𝑖)]). (9.4.10)

where 𝐽0 = 1

𝑛

∑𝑛
𝑖=1

𝜓𝑎(𝑊𝑖 ; �̂�[𝑘(𝑖)]).

Remark 9.4.4 (Sample Splitting) In step 2), the estimator �̂�[𝑘]
can be an ensemble or aggregation of several estimators as

long as we only use the data (𝑋𝑖)𝑖∉𝐼𝑘 outside the 𝑘-th fold to

construct the estimators.

Remark 9.4.5 (Choosing the number of folds) In our experi-

ence, choosing 𝐾 = 4− 5 has seemed to work well in a variety

of empirical examples and in simulations for medium-sized

data sets. For smaller data sets, a larger 𝐾 seems to work

better, and we typically recommend 𝐾 ≥ 10 for small data

sets. There is still room for work on obtaining a better under-

standing of the impact of 𝐾 and more principled guidance

on its choice.

Properties of the General DML Estimator

We turn now to the properties of the DML estimator under the

assumption of strong identification.

Definition 9.4.1 (Strong Identification) We have that M(𝜃, 𝜂0) =
0 if and and only if 𝜃 = 𝜃0, and that

𝐽0 := 𝜕𝜃E[𝜓(𝑊 ;𝜃0, 𝜂0)]

has singular values that are bounded away from zero.

In the context of the PLM, the latter condition is satisfied if

E[�̃�2] is bounded away from 0, that is, if �̃� has non-trivial

variation left after partialing-out controls. In the context of the

IRM, the latter condition is satisfied if the overlap condition

holds.

Theorem 9.4.1 (Generic Adaptive Inference with DML) As-
sume that estimates of nuisance parameters are of sufficiently
high-quality, as specified in [2]. Assume strong identification holds.

Then, estimation of nuisance parameter does not affect the behavior
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of the estimator to the first order; namely,
√
𝑛(�̂� − 𝜃0) ≈

√
𝑛𝔼𝑛[𝜑0(𝑊)],

where

𝜑0(𝑊) = −𝐽−1

0
𝜓(𝑊 ;𝜃0, 𝜂0), 𝐽0 := 𝜕𝜃E[𝜓(𝑊 ;𝜃0, 𝜂0)],

and 𝐽0 = E[𝜓𝑎(𝑊 ;𝜂0)] for linear scores (see Remark 9.4.3).

Consequently, �̂� concentrates in a 1/
√
𝑛-neighborhood of 𝜃0 and

the sampling error
√
𝑛(�̂� − 𝜃0) is approximately normal:

√
𝑛(�̂� − 𝜃0) a∼ 𝑁(0, V), V := E[𝜑0(𝑊)𝜑0(𝑊)′].

Theorem 9.4.2 Under the same regularity conditions, the interval
[𝑐′�̂�±𝑧

1−𝛼/2
√
ˆ𝑐′V𝑐/𝑛]where 𝑧

1−𝛼/2 is the (1−𝛼/2) quantile of the
𝑁(0, 1) distribution contains 𝑐′𝜃0 for approximately (1− 𝛼) × 100

percent of data realizations:

P

(
𝑐′𝜃0 ∈ [𝑐′�̂� ± 𝑧1−𝛼/2

√
ˆ𝑐′V𝑐/𝑛]

)
≈ (1 − 𝛼).

Selection of the Best ML Methods for DML to Minimize Upper

Bounds on Bias. In many problems the nuisance parameters

are regression functions

𝜂𝑚 = E[𝑉𝑚 | 𝑋𝑚], 𝑚 ∈ {1, ..., 𝑀},

where 𝑉𝑚 are some response variables and 𝑋𝑚 are covariate

vectors. Consider a set of ML methods enumerated by 𝑗 ∈
{1, ..., 𝐽} that produce estimates �̂�𝑚𝑗[𝑘] when applied to data

excluding the 𝑘-th fold. We have that

�̌�𝑖 ,𝑚 𝑗 = 𝑉𝑖 − �̂�𝑚𝑗[𝑘(𝑖)](𝑋𝑖), 𝑖 ∈ 𝐼𝑘 .

Selection of the Best ML Methods for DML to Minimize

Bias.

▶ For each method 𝑗, compute the cross-fitted MSPEs

𝔼𝑛[�̌�2

𝑚𝑗].

▶ Select the best ML method for predicting 𝑉𝑚 via

𝑗𝑚 = arg min

𝑗
𝔼𝑛[�̌�2

𝑚𝑗].
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▶ Use the method 𝑗𝑚 as a learner of 𝜂𝑚 in the Generic

DML Algorithm.

Corollary 9.4.3 The results of Theorems 9.4.1 and 9.4.2 con-

tinue to hold if 𝐽 is small.

The precise conditions may depend on the problem at hand.

See Remark 9.2.3 for discussion in the context of the partially

linear model.

9.5 Notes

For a detailed literature review and technical regularity condi-

tions needed for each of theorems, see [2], which also gives an

overview of various analytical methods for generating Neyman

orthogonal scores in a wide variety of problems.

The paper [9] goes further and describes methods for generating

higher-order orthogonal scores:

𝜕𝜂𝜕𝜂E[𝜓(𝜃0, 𝜂0)] = 0.

The use of higher-order orthogonal scores allows even weaker

requirements for the quality of machine learning estimators of

the form,

𝑛1/6∥�̂� − 𝜂0∥𝐿2 ≈ 0,

with the caveat that such higher-order orthogonal scores may

not always exist for certain subsets of distributions.

The DML method, developed in Chernozhukov, Chetverikov,

Demirer, Duflo, Hansen, Newey, and Robins [2], is simply a

practical meta-recipe that explicitly incorporates many classical

ideas from the parametric and semi-parametric econometrics

and statistics literature; see, e.g., Neyman [8]; Bickel, Klassen,

Ritov, Wellner [10]; Newey [11]; Robinson [12]; and Robins and

Rotnitzky [13]. The intent was to combine ideas from the classi-

cal semi-parametric learning literature and prediction methods

from the modern machine learning literature to provide imme-

diately practical methods that are ready for rigorous statistical

inference on predictive and causal effects. In essence, the ap-

proach can be viewed as a modernized version of the "one"-step

debiasing correction proposed by Neyman; see, e.g. [14] for a

review.
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The partialling-out approach has long been employed in clas-

sical econometrics. Robinson [12] was the first to employ it in

the context of kernel regressions. [2] extended this approach

to more modern settings where ML estimators are used for

partialling out, with cross-fitting enabling the extension.

For ATE, GATEs and ATET parameters, DML (or "doubly

robust" ML) reduces to the use of machine learned "doubly

robust scores" with cross-fitting. The idea of using doubly

robust scores (also called augmented inverse propensity score

weighted scores) is due to Robins and Rotnitzky [13], but also

arises as a special case of Newey’s [11] fundamental analysis.

Targeted maximum likelihood estimation (TMLE) is another

general approach for building orthogonal estimators [15]. This

approach relies on doing maximum likelihood estimation for a

target parameter, using a least favorable parametric submodel

for the parameter of interest as the likelihood function. As with

DML, TMLE needs to be combined with cross-fitting in order to

deal with general ML estimators to avoid overfitting. The DML

and cross-fitted TMLE should generally produce first order

equivalent answers under correct specification. However, using

TMLE can refine the finite-sample properties.

In the context of ATE, TMLE can be seen as applying a calibrated

correction to a nonlinear regression function. We regress �̌�𝑖 =

𝑌𝑖 − �̂�(𝐷𝑖 , 𝑋𝑖) on �̂�𝑖 , obtaining

𝑏 = 𝔼𝑛[�̌��̂�]/𝔼𝑛[�̂�2].

Then we correct the regression function estimate by �̄�(𝐷𝑖 , 𝑋𝑖) =
�̂�(𝐷𝑖 , 𝑋𝑖)+𝑏�̂�𝑖 . This correction was first proposed by Sharfstein,

Rotnitzky and Robins [16]. The basic idea is that we know that

𝑌𝑖 − 𝑔(𝐷𝑖 , 𝑋𝑖) should be orthogonal to 𝐻𝑖 . Thus, if our estimate

of the regression function does not have this property, we can

recalibrate the regression function so the property holds.

For guidance on using DML in empirical studies and on hyper-

parameter tuning related to DML we refer to [17].

9.6 Notebooks

Notebook 9.6.1 (DML for Impact of Gun Ownership on Homi-

cide Rates) R Notebook on DML for Impact of Gun Ownership

on Homicide Rates and Python Notebook on DML for Impact

of Gun Ownership on Homicide Rates provide an application

of DML inference to learn predictive/causal effects of gun

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r_dml_inference_for_gun_ownership.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r_dml_inference_for_gun_ownership.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/python_dml_inference_for_gun_ownership.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/python_dml_inference_for_gun_ownership.ipynb
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ownership on homicide rates across U.S. counties.

Notebook 9.6.2 (Notebook on Dagitty-Based Identification in

401(K) Example) R Notebook on Dagitty-Based Identification

in 401(K) Example and Python Notebook on Pgmpy-Based

Identification in 401(K) Example analyze graph structures that

enable identification of the causal effect of 401(K) eligibility

on net financial wealth.

Notebook 9.6.3 (DML for Impact of 401(K) Eligibility on

Financial Wealth) R Notebook on DML for Impact of 401(K)

Eligibility on Financial Wealth and Python Notebook on DML

for Impact of 401(K) Eligibility on Financial Wealth provide ap-

plication of DML inference to learn predictive/causal effects

of 401(K) eligibility on net financial wealth.

Notebook 9.6.4 (DML for Growth Regression Analysis) R

Notebook on DML for Growth Regression Analysis and

Python Notebook on DML for Growth Regression Analysis

build upon the application discussed in Chapter 4 by pro-

viding an application of DML inference based on ML on

predictive/causal effects of countries’ initial wealth on the

rate of economic growth.

9.7 Exercises

Exercise 9.7.1

Exercise 9.7.2 (Hands-on Exercise) Experiment with one of

the notebooks for the partially linear models (Guns example,

Guns with DNNs, or Growth example). For example,

(a) Apply the methods to a different empirical example

(e.g., Penn reemployment experiment from CI-1),

(b) or, using the same empirical example, try to use the

H20 Auto ML framework as the machine learning tool

to estimate 𝑚 and ℓ functions. (See Chapter 8 H20 Auto

ML to get started).

Explain what you are doing to a fellow student.

Exercise 9.7.3 (Identification (Empirical)) Study the 401(K)

identification notebook that uses Dagitty. Extend it to another

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r-identification-analysis-of-401-k-example-w-dags.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r-identification-analysis-of-401-k-example-w-dags.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/python-identification-analysis-of-401-k-example-w-dags.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/python-identification-analysis-of-401-k-example-w-dags.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r-dml-401k.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r-dml-401k.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/python-dml-401k.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/python-dml-401k.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r_debiased_ml_for_partially_linear_model_growth.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/r_debiased_ml_for_partially_linear_model_growth.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM4/python_debiased_ml_for_partially_linear_model_growth.ipynb
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empirical example of your choice. Explain the principles you

are using to a fellow student.

Exercise 9.7.4 (Empirical Application) Study the 401(K) em-

pirical analysis notebook. Extend it to another empirical

example of your choice (the Penn reemployment experiment

from Chapter 1, for example) or estimate ATE for 401(K) eli-

gibility for a subset of low income (or high-income) workers

(Group ATEs).

Exercise 9.7.5 ((Theoretical) Neyman Orthogonality) Explain

to a friend the concept of Neyman orthogonality, illustrating

it with one of the examples in Appendix B. Extend the cal-

culations in Appendix B to verify Neyman orthogonality for

the ATET score specified in (9.4.8).

Exercise 9.7.6 ((Theoretical) Neyman Orthogonality) Explain

to a friend the concept of Neyman orthogonality, and explain

why the formulations given in Remark 9.3.1 are not Neyman

orthogonal.
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9.A Bias Bounds with Proxy Treatments

Here we explain the measurement error bias in the partially

linear structural equation model where treatment is measured

with error:

𝑌 := 𝛼𝐺 + 𝑔𝑌(𝑋) + 𝜖𝑌 ;

𝐷 := 𝐺 + 𝑔𝐷(𝑋) + 𝜖𝐷 ;

𝐺 := 𝑔𝐺(𝑋) + 𝜖𝐺;

𝑋 := 𝜖𝑋 ;

where 𝜖’s are independent and centered. The second equation

states that 𝐷 is generated as a proxy for the actual treatment 𝐺

using a partially linear structure. In partialled-out form

�̃� := 𝛼𝜖𝐺 + 𝜖𝑌 ;

�̃� := 𝜖𝐺 + 𝜖𝐷 ;

�̃� := 𝜖𝐺 .

The projection of �̃� on �̃� recovers the projection coefficient:

𝛽 = E[�̃��̃�]/E[�̃�2] = 𝛼E[𝜖2

𝐺]/(E[𝜖
2

𝐺] + E[𝜖2

𝐷]).

It follows that there is attenuation bias in the estimable quantity

𝛽 relative to the target parameter 𝛼:

|𝛽 | < |𝛼 |.

As the proxy error E[𝜖2

𝐷
] becomes small, the difference between

𝛽 and 𝛼 becomes small. Specifically, if E[𝜖2

𝐷
] → 0, then 𝛽 →

𝛼.

If we somehow knew that

𝑅2

�̃�∼�̃� := E[𝜖2

𝐺]/(E[𝜖
2

𝐺] + E[𝜖2

𝐷]) ≥ 𝑟 −

that is, if we knew that the true treatment 𝐺 explains at least

𝑟 of the variance of the proxy treatment 𝐷 – then we could

construct the upper and lower bound on 𝛼 from 𝛽. E.g. when

𝛽 > 0, we would have

𝛽 ≤ 𝛼 ≤ 𝛽/𝑅2

𝐷∼𝐺 = (1/𝑟)𝛽.
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9.B Illustrative Neyman Orthogonality

Calcuations

The Score in the Partially Linear Model. Consider the score

for the PLM given in (9.4.3). We have that

E[𝜓(𝑊 ; 𝛽0, 𝜂0)] = 0

by definition of 𝛽0 of 𝜂0. Let𝑈 = (𝑌 − ℓ0(𝑋)) − (𝐷 −𝑚0(𝑋))𝛽0).
Then, for any 𝜂 = (𝑚, ℓ ) that are square integrable, the Gateaux

derivative in the direction

Δ = 𝜂 − 𝜂0 = (𝑚 − 𝑚0, ℓ − ℓ0)

is given by

𝜕𝜂E[𝜓(𝑊 ; 𝛽0, 𝜂0)][Δ]

= −E

[
𝑈(𝑚(𝑋) − 𝑚0(𝑋))

]
− E

[(
(𝑚(𝑋) − 𝑚0(𝑋))𝛽0 + (ℓ (𝑋) − ℓ0(𝑋))

)
(𝐷 − 𝑚0(𝑋))

]
= 0,

by the law of iterated expectations since E[𝐷 − 𝑚0(𝑋) | 𝑋] = 0

and E[𝑈 | 𝐷, 𝑋] = 0.

The Score for IRM. Consider the score for the ATE in the IRM

given in (9.4.4). We have that

E[𝜓(𝑊 ;𝜃0, 𝜂0)] = 0

by definition of 𝜃0 and 𝜂0. Also, for any 𝜂 = (𝑔, 𝑚) that are

square integrable with 1/𝑚 + 1/(1 − 𝑚) uniformly bounded,

the Gateaux derivative in the direction

Δ = 𝜂 − 𝜂0 = (𝑔 − 𝑔0, 𝑚 − 𝑚0)
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is given by

𝜕𝜂E[𝜓(𝑊 ;𝜃0, 𝜂0)][Δ]

= E

[
𝑔(1, 𝑋) − 𝑔0(1, 𝑋)

]
− E

[
𝑔(0, 𝑋) − 𝑔0(0, 𝑋)

]
− E

[𝐷(𝑔(1, 𝑋) − 𝑔0(1, 𝑋))
𝑚0(𝑋)

]
+ E

[ (1 − 𝐷)(𝑔(0, 𝑋) − 𝑔0(0, 𝑋))
1 − 𝑚0(𝑋)

]
− E

[𝐷(𝑌 − 𝑔0(1, 𝑋))(𝑚(𝑋) − 𝑚0(𝑋))
𝑚2

0
(𝑋)

]
− E

[ (1 − 𝐷)(𝑌 − 𝑔0(0, 𝑋))(𝑚(𝑋) − 𝑚0(𝑋))
(1 − 𝑚0(𝑋))2

]
,

which is 0 by the law of iterated expectations since E[𝐷 | 𝑋] =
𝑚0(𝑋), E[1 − 𝐷 | 𝑋] = 1 − 𝑚0(𝑋), E[𝐷(𝑌 − 𝑔0(1, 𝑋)) | 𝑋] = 0,

and E[(1 − 𝐷)(𝑌 − 𝑔0(0, 𝑋)) | 𝑋] = 0.
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