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"you are smarter than your data. Data do not un-

derstand causes and effects; humans do."

– Judea Pearl [1].

Here, we explore a fully nonlinear, nonparametric formulation

of causal diagrams and their associated structural equation

models (SEMs). These models offer a powerful and flexible tool

for understanding the structures that underpin causal identifica-

tion, allowing us to move beyond restrictive linear assumptions.

Using these structures, we define potential outcomes—also

known as counterfactuals—following what Judea Pearl terms

the "First Law of Causal Inference," which establishes that SEMs

naturally induce these outcomes. This foundation enables a

systematic approach to causal analysis. Moreover, we can algo-

rithmically verify, using the directed acyclic graphs (DAGs) that

encode these structures, whether the conditional ignorability

conditions necessary to transform predictive regressions into

causal inferences are satisfied. In fact, given a DAG, we can

derive sufficient adjustment sets—sets of variables to condition

on in regressions—that enable us to uncover average causal

effects. This process leverages the graphical representation of

contextual knowledge to ensure that the statistical relation-

ships we observe reflect true causal impacts, rather than mere

correlations.
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1: In 2011, J. Pearl received the A.M.

Turing Award, the highest honor

in Computer Science and Artificial

Intelligence, “for fundamental con-

tributions to artificial intelligence

through the development of a cal-

culus for probabilistic and causal

reasoning.” In his 1995 Biometrika
article [2], Pearl frames his work as

a generalization of the SEMs pro-

posed by T. Haavelmo [3] in 1944

and others.

2: Pearl refers to the implication of

POs from SEMs as the “First Law

of Causal Inference.”

7.1 Introduction

The purpose of this module is to present a formal, fully nonlinear

(nonparametric) formulation of structural equation models

(SEMs) and their corresponding causal directed acyclic graphs

(DAGs). We explore the concepts and identification results

pioneered by Judea Pearl and his collaborators, as well as those

developed by James M. Robins and his collaborators.
1

SEMs define a recursive system of equations that generate vari-

ables. From these models, we can derive counterfactuals, also

known as potential outcomes (POs).
2

We represent both fac-

tual and counterfactual variables using DAGs, leveraging their

structure to deduce the conditional independence conditions

(e.g., ignorability, exogeneity) required to transform predictive

regressions into causal inferences.

We then examine two approaches for identifying variables to

adjust for (condition on) when estimating the causal effect of a

treatment on an outcome using DAGs: the backdoor adjustment

approach and the counterfactual DAG approach. The backdoor

criterion, developed by Judea Pearl, analyzes the factual DAG

to identify a set of variables that blocks all backdoor paths –

paths from the treatment to the outcome beginning with an

arrow into the treatment– while ensuring these variables are not

descendants of the treatment, thereby eliminating confounding

influences. In contrast, the counterfactual DAG approach uses

a modified DAG where the treatment is hypothetically fixed to

a specific value, identifying a set of variables that “d-separates”

the natural treatment value from the counterfactual outcome,

ensuring conditional independence between the treatment and

the counterfactual outcome given these variables.

This chapter is divided into two parts. The first introduces

key concepts through a specific empirical example, while the

second provides general, albeit more technical, mathematical

definitions. Additional technical material is included in the

appendix.

Notation. Consider a pair of random variables (or, equivalently,

random vectors) 𝑈 and 𝑉 with joint probability (or mass)

function p𝑈𝑉(𝑢, 𝑣) evaluated at (𝑢, 𝑣). When no ambiguity

arises, we denote p𝑈𝑉(𝑢, 𝑣) simply as p(𝑢, 𝑣). Their marginal

probability (or mass) functions are denoted by p𝑈(𝑢) and p𝑉(𝑣),
or simply p(𝑢) and p(𝑣). We say that𝑈 and 𝑉 are independent

(denoted𝑈 ⊥⊥ 𝑉) if and only if the joint function factorizes as

p(𝑢, 𝑣) = p(𝑢) p(𝑣),

https://en.wikipedia.org/wiki/Judea_Pearl
https://en.wikipedia.org/wiki/James_Robins
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or equivalently, if E[𝑔(𝑈)ℓ (𝑉)] = E[𝑔(𝑈)]E[ℓ (𝑉)] for any bounded

functions 𝑔 and ℓ . This definition of independence implies the

ignorability or exclusion results,

p(𝑢 | 𝑣) = p(𝑢), p(𝑣 | 𝑢) = p(𝑣),

which follow from Bayes’ law. Conditional independence is

defined similarly by replacing distributions and expectations

with their conditional counterparts. Appendix 7.A reviews

some useful results on conditional independence.

7.2 General DAG and SEMs via an

Example

The best way to learn the main ideas behind modern SEMs

and causal directed acyclic graphs DAGs is to work through a

concrete example.

The Impact of 401(k) Eligibility on Financial

Wealth

A 401(k) is a U.S. employer-sponsored retirement plan that

allows workers to contribute a portion of their wages—often

pre-tax—to investment accounts, sometimes with matching

contributions from their employer. Figure 7.1 shows one possible

causal diagram for this problem:

𝐷

𝑋

𝑌

𝑀

𝐹

𝑈

Figure 7.1: Causal Diagram for

401(k): 𝑌 represents net financial

assets; 𝐷 denotes eligibility for a

401(k) program; 𝑋 includes ob-

served worker-level covariates (e.g.,

income); 𝐹 represents unobserved

firm-level covariates; 𝑀 denotes

the employer’s matching contribu-

tion; and𝑈 captures general latent

factors.

This diagram represents how 401(k) eligibility (𝐷) might affect

an individual’s net financial assets (𝑌) both directly and indi-

rectly through the employer’s matching contribution (𝑀). It

includes observed worker-level characteristics (𝑋), unobserved

firm-level characteristics (𝐹), and latent factors (𝑈) that may

influence the pathway from eligibility to financial outcomes.
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3: Please check this assertion by

querying AI.

4: Markovian networks, also

known as Bayesian Markovian

Networks or simply Bayesian

Networks, are a type of probabilis-

tic graphical model. We use the

term ’Markovian networks’ as it is

arguably more precise.

This representation reasonably captures the context of the un-

derlying problem.
3

The DAG as a Markovian Model

The DAG above formally represents the conditional dependen-

cies among the variables, allowing us to express their joint dis-

tribution in terms of conditional distributions. In these graphs,

each node represents a random variable (or vector), and an

arrow from one node (a “parent”) to another (a “child”) indi-

cates that the parent directly influences the child, establishing

statistical dependency.

The Markov property states that each variable is conditionally

independent of all non-parents (and non-descendants) given its

parents. Consequently, the joint probability distribution can be

written as the product of each variable’s conditional distribution

given its parents.

In our example, the variables are:

𝑈, 𝐹, 𝑋, 𝐷, 𝑀, 𝑌,

with the following parent-child relationships based on the

DAG:

▶ 𝑈 has no parents (a “root” node),

▶ 𝐹 has parent𝑈 ,

▶ 𝑋 has parent𝑈 ,

▶ 𝐷 has parents 𝐹 and 𝑋,

▶ 𝑀 has parents 𝐷, 𝐹, and 𝑋,

▶ 𝑌 has parents 𝐷, 𝑀, and 𝑋.

According to the chain rule for Markovian networks,
4

the joint

distribution p(𝑢, 𝑓 , 𝑥, 𝑑, 𝑚, 𝑦) factorizes as:

p(𝑢, 𝑓 , 𝑥, 𝑑, 𝑚, 𝑦) = p(𝑢)
× p( 𝑓 | 𝑢) p(𝑥 | 𝑢)
× p(𝑑 | 𝑓 , 𝑥, 𝑢)
× p(𝑚 | 𝑑, 𝑓 , 𝑥)
× p(𝑦 | 𝑑, 𝑚, 𝑥).

Because𝑈 is a root node, its distribution is simply p(𝑢). Each

subsequent variable is represented by its conditional distri-

bution given its parents. This approach is a cornerstone of
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probabilistic graphical models, clarifying the conditional in-

dependencies and potential pathways of influence among the

variables.

The DAG as a Structural Equations Model

Following Pearl, we interpret the DAG as implying that (or

being implied by) the following system of structural equations

holds:

𝑌 := 𝑓𝑌
(
𝐷, 𝑀, 𝑋, 𝜖𝑌

)
,

𝑀 := 𝑓𝑀
(
𝐷, 𝐹, 𝑋, 𝜖𝑀

)
,

𝐷 := 𝑓𝐷
(
𝐹, 𝑋, 𝜖𝐷

)
,

𝑋 := 𝑓𝑋
(
𝑈, 𝜖𝑋

)
,

𝐹 := 𝑓𝐹
(
𝑈, 𝜖𝐹

)
,

𝑈 := 𝜖𝑈 ,

where

𝜖𝑌 , 𝜖𝑀 , 𝜖𝐷 , 𝜖𝑋 , 𝜖𝐹 , 𝜖𝑈

are mutually independent stochastic shocks (which may be

vector-valued), and 𝑓𝑌 , 𝑓𝑀 , 𝑓𝐷 , 𝑓𝑋 , 𝑓𝐹 are structural functions.

Here, each variable is defined as a function of its parent variables

(as determined by the DAG) and its own exogenous noise 𝜖. For

instance, the equation

𝑌 := 𝑓𝑌
(
𝐷, 𝑀, 𝑋, 𝜖𝑌

)
indicates that net financial assets𝑌 are determined by eligibility

𝐷, the matching contribution 𝑀, observed covariates 𝑋, and

an unobserved shock 𝜖𝑌 . The assignment operator (:=) signi-

fies that variables are generated recursively, starting from the

root and proceeding through subsequent layers based on their

parents and noise terms.

Intervention and Counterfactual DAG and SEM

Thus far, the DAG and SEM we have formulated lack inherent

causal meaning. Causality emerges when we introduce the

concept of an intervention. In particular, consider intervening

by replacing 𝐷 with a fixed value 𝑑 in the equations for all

descendants of 𝐷. By assumption, the structural equations

remain invariant under such an intervention—this invariance
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is the essence of their "structural" nature. Consequently, we

obtain the counterfactual outcomes:

𝑌(𝑑) := 𝑓𝑌
(
𝑑, 𝑀(𝑑), 𝑋, 𝜖𝑌

)
,

𝑀(𝑑) := 𝑓𝑀
(
𝑑, 𝐹, 𝑋, 𝜖𝑀

)
,

where 𝑌(𝑑) denotes the potential net financial wealth under

treatment 𝑑 and 𝑀(𝑑) represents the matching contribution

under 𝑑. The remaining equations remain unchanged. Thus,

the complete counterfactual system is:

𝑌(𝑑) := 𝑓𝑌
(
𝑑, 𝑀(𝑑), 𝑋, 𝜖𝑌

)
,

𝑀(𝑑) := 𝑓𝑀
(
𝑑, 𝐹, 𝑋, 𝜖𝑀

)
,

𝐷 := 𝑓𝐷
(
𝐹, 𝑋, 𝜖𝐷

)
,

𝑋 := 𝑓𝑋
(
𝑈, 𝜖𝑋

)
,

𝐹 := 𝑓𝐹
(
𝑈, 𝜖𝐹

)
,

𝑈 := 𝜖𝑈 .

(Note: An alternative formulation, called the do-counterfactual,
omits the equation for the naturally generated 𝐷; the version

here is known as the fix-counterfactual.)

The invariance assumption ensures that the functional forms

𝑓𝑌 , 𝑓𝑀 , etc., remain unchanged even when we set 𝐷 = 𝑑 in

the equations for 𝑌 and 𝑀. Although the original equation for

𝐷 remains in the model, the intervention fixes 𝐷 at 𝑑 for the

purpose of determining 𝑌(𝑑) and 𝑀(𝑑).

We can now construct a counterfactual DAG—also known as a

SWIG (Single World Intervention Graph)—that corresponds to

this counterfactual system.

𝐷

𝑋

𝑌(𝑑)

𝑀(𝑑)

𝐹

𝑈

𝑑

Figure 7.2: Counterfactual DAG

for the intervention 𝐷 = 𝑑. Here,

𝑌(𝑑) = 𝑓𝑌(𝑑, 𝑀(𝑑), 𝑋, 𝜖𝑌) and

𝑀(𝑑) = 𝑓𝑀(𝑑, 𝐹, 𝑋, 𝜖𝑀) reflect the

intervention (with 𝑑 shown as a de-

terministic node). The natural node

𝐷 is still generated by 𝑓𝐷(𝐹, 𝑋, 𝜖𝐷),
but its outgoing arrows are re-

moved. Other nodes: 𝑋 (worker-

level covariates), 𝐹 (firm-level co-

variates), and𝑈 (latent factors).
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Conditional Ignorability/Exogeneity

The fact that the SEM implies potential outcomes is known

as the First Law of Causal Inference. This equivalence means

that nothing is lost by working with SEMs/DAGs instead of

potential outcomes directly. Moreover, because SEMs/DAGs

encapsulate the contextual knowledge of a problem, we can

derive the conditional ignorability/exogeneity condition from

the model rather than merely postulating it. For example, in

our case we deduce that

𝑌(𝑑) ⊥⊥ 𝐷 | 𝐹, 𝑋,

which implies that

E

[
𝑌(𝑑) | 𝐹, 𝑋

]
= E

[
𝑌 | 𝐷 = 𝑑, 𝐹, 𝑋

]
,

allowing us to identify average causal (or treatment) effects by

adjusting (or conditioning on 𝐹, 𝑋.)

There are two ways to verify that (𝐹, 𝑋) satisfy this condition:

Functional (Structural) Argument.

In the counterfactual setting where we fix 𝐷 = 𝑑, the relevant

structural equations are

𝑌(𝑑) = 𝑓𝑌
(
𝑑, 𝑀(𝑑), 𝑋, 𝜖𝑌

)
and 𝑀(𝑑) = 𝑓𝑀

(
𝑑, 𝐹, 𝑋, 𝜖𝑀

)
.

The random variable 𝐷 is still generated by

𝐷 = 𝑓𝐷
(
𝐹, 𝑋,𝑈, 𝜖𝐷

)
.

Once we condition on 𝐹 and 𝑋, the distribution of 𝑌(𝑑) is

determined solely by 𝑑, 𝑀(𝑑), 𝑋, and their associated noise

terms, and is not influenced by the realized value of𝐷. Formally,

𝑌(𝑑) is statistically independent from 𝐷, conditional on 𝐹 and

𝑋:

𝑌(𝑑) ⊥⊥ 𝐷 | 𝐹, 𝑋.

In other words, once 𝐹 and 𝑋 are given, knowing 𝐷 adds no

additional information about 𝑌(𝑑).

A similar argument shows that 𝐷 is not ignorable when condi-

tioning on worker characteristics 𝑋 alone:

𝑌(𝑑) ̸⊥⊥ 𝐷 | 𝑋.
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5: In such cases, omitted vari-

able bias can still be studied and

bounded; see later chapters and [4].

6: See the formal definition of d-

separation and blocking later in the

chapter.

7: Equivalence of d-separtion and

conditional independence is called

Global Markov property and is a

fundamental result in the DAG the-

ory.

8: See the formal definition of

blocking later in the chapter.

9: It also prevents conditioning on

colliders, examples of which we

have seen the previous chapter.

Omitted firm characteristics 𝐹 induce a dependency between

the potential outcomes and the treatment 𝐷, posing a problem

for studies that control for 𝑋 but not 𝐹.
5

D-Separation (Graphical) Argument

In the counterfactual DAG, 𝑌(𝑑) receives inputs from 𝑀(𝑑),
𝑋, and the fixed node 𝑑. Although 𝐷 remains in the graph

(generated by its usual parents 𝐹, 𝑋, and𝑈), there is no arrow

from 𝐷 to 𝑌(𝑑). Any path from 𝐷 to 𝑌(𝑑)must traverse 𝐹 or 𝑋 .

For example, the paths are:

1. 𝐷 ← 𝑋 → 𝑌(𝑑),
2. 𝐷 ← 𝐹→ 𝑀(𝑑) → 𝑌(𝑑),
3. 𝐷 ← 𝐹← 𝑈 → 𝑋 → 𝑌(𝑑).

Conditioning on 𝐹 and 𝑋 is said to block these paths (condi-

tioning on a node severs information flow), which then makes

𝐷 to be d-separated from 𝑌(𝑑) given {𝐹, 𝑋}.6 By the equiva-

lence between d-separation and conditional independence,
7

we conclude that

𝑌(𝑑) ⊥⊥ 𝐷 | 𝐹, 𝑋.

Backdoor Blocking (Graphical) Argument

Another approach for identifying the average causal effect of 𝐷

on 𝑌 uses the original DAG instead of the counterfactual DAG.

We note though that this principle was in fact derived by J. Pearl

[2] from the counterfactual DAG of the form stated above.

The goal is to identify a set 𝑍 that blocks all backdoor paths
between 𝐷 and 𝑌. A set 𝑍 satisfies the backdoor criterion if:

1. No variable in 𝑍 is a descendant of 𝐷, and

2. 𝑍 blocks
8

every backdoor path from 𝐷 to 𝑌 (a backdoor

path starts with an arrow into 𝐷).

The first rule prevents blocking causal paths from 𝐷 to 𝑌, such

as 𝐷 → 𝑀 → 𝑌.
9

The second rule ensures that conditioning

on 𝑍 eliminates all non-causal paths that could confound the

relationship between 𝐷 and 𝑌. Thus condition on 𝑍, the sta-

tistical association between 𝑌 and 𝐷 only reflects the causal

channels.

In the 401(k) diagram, the backdoor paths from 𝐷 to 𝑌 run

through 𝐹 and 𝑋:

1. 𝐷 ← 𝑋 → 𝑌,

2. 𝐷 ← 𝐹→ 𝑀 → 𝑌,
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10: Although we believe the previ-

ous examples effectively illustrate

the core concepts, presenting gen-

eral definitions and results remains

essential, given the foundational

role of ASEMs and DAGs in causal

inference.

3. 𝐷 ← 𝐹← 𝑈 → 𝑋 → 𝑌.

By conditioning on both 𝐹 and 𝑋, we are said to block all such

paths, allowing us to identify the average causal effect of 𝐷 on

𝑌, assuming no additional unobserved confounding.

Wrap-Up and Implications for 401(k) Analysis

Both functional and graphical perspectives yield the same con-

clusion. Functionally, once 𝐹 and 𝑋 are fixed, 𝑌(𝑑) is governed

solely by noise terms independent of those influencing the

natural value of𝐷. Graphically, conditioning on 𝐹 and 𝑋 blocks

all paths from 𝐷 to 𝑌(𝑑) in the counterfactual DAG, and in

the original DAG, all backdoor paths are blocked by {𝐹, 𝑋}. In

either case, we have

𝑌(𝑑) ⊥⊥ 𝐷 | 𝐹, 𝑋,

which formalizes the idea that, once 𝐹 and 𝑋 are taken into

account, the naturally generated 𝐷 is irrelevant for the counter-

factual outcome 𝑌(𝑑). This conditional ignorability allows us to

identify the average causal effect of 𝐷 on 𝑌.

7.3 Definitions of General DAGs and

ASEMs

The purpose of this section is to generalize the previous example

to encompass general ASEMs and DAGs. Here, we provide con-

cise general definitions and present key mathematical results.
10

A graph G is an ordered pair (𝑉, 𝐸), where 𝑉 = {1, . . . , 𝐽} is a

set of vertices (nodes) and 𝐸 is a collection of edges, represented

by entries 𝑒𝑖 𝑗 ∈ {0, 1} for (𝑖 , 𝑗) ∈ 𝑉 ×𝑉 .

Given a collection of random variables 𝑋 = (𝑋𝑗)𝑗∈𝑉 , we asso-

ciate each index 𝑗 with 𝑋𝑗 and use them interchangeably for

convenience. If an edge (𝑖 , 𝑗) exists (i.e., 𝑒𝑖 𝑗 = 1), we interpret it

as

“𝑋𝑖 → 𝑋𝑗” or “𝑋𝑖 is an immediate cause of 𝑋𝑗”.

Consider a strict partial order < on 𝑉 induced by 𝐸, where

𝑋𝑗 < 𝑋𝑘 (read as “𝑋𝑗 is determined before 𝑋𝑘”) means either
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11: The absence of cycles ensures

that 𝑋𝑗 < 𝑋𝑗 never holds.

𝑋𝑗 → 𝑋𝑘 or there exists a directed path

𝑋𝑗 → 𝑋𝑣1
→ · · · → 𝑋𝑣𝑚 → 𝑋𝑘 .

A partial ordering exists if no node precedes itself (i.e., the

graph contains no cycles).
11

Definition 7.3.1 (DAG) The graph G = (𝑉, 𝐸) is a directed

acyclic graph (DAG) if it contains no cycles; equivalently, if 𝑉 is
partially ordered by the edge structure 𝐸.

Definition 7.3.2 (Parents, Ancestors, and Descendants) The
parents of 𝑋𝑗 are defined as

𝑃𝑎 𝑗 := {𝑋𝑘 : 𝑋𝑘 → 𝑋𝑗}.

The children of 𝑋𝑗 are

𝐶ℎ 𝑗 := {𝑋𝑘 : 𝑋𝑗 → 𝑋𝑘}.

The ancestors of 𝑋𝑗 are

𝐴𝑛 𝑗 := {𝑋𝑘 : 𝑋𝑘 < 𝑋𝑗} ∪ {𝑋𝑗},

and the descendants of 𝑋𝑗 are

𝐷𝑠 𝑗 := {𝑋𝑘 : 𝑋𝑘 > 𝑋𝑗}.

From DAGs to ASEMs

Every causal DAG implicitly defines a nonparametric acyclic

structural equation model (ASEM); the two are equivalent rep-

resentations of the same assumptions about the data-generating

process. In this perspective, DAGs serve as visual depictions of

ASEMs, while ASEMs provide the structural equation formula-

tions of DAGs.

Definition 7.3.3 (ASEM) The ASEM corresponding to the DAG
G = (𝑉, 𝐸) is the collection of random variables {𝑋𝑗} 𝑗∈𝑉 satisfying

𝑋𝑗 := 𝑓𝑗(𝑃𝑎 𝑗 , 𝜖 𝑗), 𝑗 ∈ 𝑉,

where the disturbances (𝜖 𝑗)𝑗∈𝑉 are jointly independent.
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Definition 7.3.4 (Linear ASEM) A linear ASEM is an ASEM
in which the equations are linear:

𝑓𝑗(𝑃𝑎 𝑗 , 𝜖 𝑗) := 𝑓 ′𝑗 𝑃𝑎 𝑗 + 𝜖 𝑗 .

Here, the functions { 𝑓𝑗} are identified with their coefficient vectors.

In linear ASEMs, the requirement of independent errors may

be relaxed to uncorrelated errors.

Definition 7.3.5 (Structural /Potential Response Processes)

The structural potential response processes for the ASEM
corresponding to G = (𝑉, 𝐸) are given by

𝑋𝑗(𝑝𝑎 𝑗) := 𝑓𝑗(𝑝𝑎 𝑗 , 𝜖 𝑗), 𝑗 ∈ 𝑉,

viewed as stochastic processes indexed by the potential parental
values 𝑝𝑎 𝑗 .

Definition 7.3.6 (Consistency) The observable variables are
generated by drawing {𝜖 𝑗} 𝑗∈𝑉 and then solving the system of
equations for {𝑋𝑗} 𝑗∈𝑉 .

The stochastic shocks {𝜖 𝑗} 𝑗∈𝑉 are called exogenous variables, while

the variables {𝑋𝑗} 𝑗∈𝑉 are endogenous; the latter are determined

by the model equations, whereas the former are not.

The joint distribution of variables in an ASEM is characterized

by the following theorem.

Theorem 7.3.1 (Factual Law via Markovian Factorization) The
ASEM (𝑋𝑗)𝑗∈𝑉 associated with a DAG G = (𝑉, 𝐸) satisfies the
following equivalent properties:

▶ Factorization:

p({𝑥ℓ }ℓ∈𝑉) =
∏
ℓ∈𝑉

p(𝑥ℓ | 𝑝𝑎ℓ ).

▶ Local Markov Property: Each variable is independent of
its non-descendants given its parents.

D-Separation and Testable Restrictions

Next, we examine the constraints on the data-generating process

implied by a given DAG. We introduce the concept of d-separation
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𝑍 𝐷 𝑌

𝑋

Figure 7.3: The path 𝑌 ← 𝑋 → 𝐷
is blocked by conditioning on 𝑋.

𝑍 𝐷 𝑌

𝐶

Figure 7.4: The path 𝑌 → 𝐶 ← 𝐷
is blocked but opens when condi-

tioning on 𝐶.

and demonstrate that it implies conditional independence,

known as the global Markov condition associated with the

DAG. To proceed, we first require several definitions.

Definition 7.3.7 (Paths and Backdoor Paths on DAGs) A
directed path is a sequence

𝑋𝑣1
→ 𝑋𝑣2

→ · · · → 𝑋𝑣𝑚 .

A non-directed path is a path in which some, but not all, arrows
are replaced by←. A node 𝑋𝑗 is a collider on a path if the path
includes a subpath of the form→ 𝑋𝑗 ←. A backdoor path from
𝑋𝑙 to 𝑋𝑘 is a non-directed path that starts at 𝑋𝑙 and ends with an
arrow into 𝑋𝑘 .

Definition 7.3.8 (Blocked Paths) A path 𝜋 is blocked by a set
of nodes 𝑆 if either:

1. 𝜋 contains a chain 𝑖 → 𝑚 → 𝑗 or a fork 𝑖 ← 𝑚 → 𝑗 with
𝑚 ∈ 𝑆, or

2. 𝜋 contains a collider 𝑖 → 𝑚 ← 𝑗 such that neither 𝑚 nor
any descendant of 𝑚 is in 𝑆.

A path that is not blocked is open.

In Figure 7.3, the backdoor path 𝑌 ← 𝑋 → 𝐷 is blocked by

setting 𝑆 = 𝑋.

Definition 7.3.9 (Opening a Path by Conditioning) A path
containing a collider is opened by conditioning on that collider or
one of its descendants.

In Figure 7.4, the path 𝑌 → 𝐶 ← 𝐷 is blocked (by the empty

set) but becomes open when conditioned on the collider 𝐶.

Definition 7.3.10 (d-Separation) Given a DAG G, a set of nodes
𝑆 d-separates nodes 𝑋 and 𝑌 if 𝑆 blocks all paths between 𝑋 and
𝑌. We denote this as

(𝑋 ⊥⊥𝑑 𝑌 | 𝑆)G.

The following theorem establishes a fundamental link between

d-separation and conditional independence.

Theorem 7.3.2 (Verma and Pearl [5]; Conditional Indepen-
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𝑍 𝑋 𝑌

𝑈

Figure 7.5: Example of d-

separation.

𝑍 𝑋 𝑌

𝑈

Figure 7.6: Example of d-

separation.

12: Examples include conditional

independence tests, exclusion re-

striction tests, or conditional mo-

ment tests.

dence from d-Separation) If (𝑋 ⊥⊥𝑑 𝑌 | 𝑆)G holds, then

𝑋 ⊥⊥ 𝑌 | 𝑆.
Intuitively, conditioning on 𝑆 interrupts the information flow

between 𝑋 and 𝑌, rendering them unable to predict each

other given 𝑆. While this result is intuitive and verifiable in

simple cases, its formal proof is nontrivial. The converse does

not generally hold but is argued to hold “generically” (see

Section 7.C).

Example 7.3.1 We illustrate how d-separation implies condi-

tional independence:

1. In Figure 7.5, 𝑋 and 𝑌 are d-separated by 𝑆 = {𝑍,𝑈}
since 𝑆 blocks all paths between them. By Markov

factorization,

p(𝑦, 𝑥 | 𝑢, 𝑧) = p(𝑦 | 𝑥, 𝑧, 𝑢) p(𝑥 | 𝑧, 𝑢)
= p(𝑦 | 𝑢, 𝑧) p(𝑥 | 𝑧, 𝑢),

implying 𝑋 ⊥⊥ 𝑌 | 𝑍,𝑈 .

2. In Figure 7.6, 𝑋 and 𝑌 are d-separated by 𝑆 = {𝑍}, and

similarly,

p(𝑦, 𝑥 | 𝑧) = p(𝑦 | 𝑧) p(𝑥 | 𝑧),

implying 𝑋 ⊥⊥ 𝑌 | 𝑍.

These testable restrictions—known as exclusion restrictions in

econometrics—can be expressed as

𝑌 ⊥⊥ 𝑋 | 𝑍 ⇐⇒ p(𝑦 | 𝑥, 𝑧) = p(𝑦 | 𝑧), (7.3.1)

which is equivalent to

E[𝑔(𝑌) | 𝑋, 𝑍] = E[𝑔(𝑌) | 𝑍] (7.3.2)

for any bounded function 𝑔. In other words,𝑋 does not improve

the prediction of 𝑔(𝑌) when 𝑍 is known. Numerous tests for

such restrictions exist in the literature; see, e.g., [6].
12

In linear ASEMs, these tests reduce to hypotheses about regres-

sion coefficients. For example, to test whether 𝑌 ⊥⊥ 𝑋 | 𝑍, one

can examine whether the coefficient 𝛼 = 0 in the regression

𝑌 = 𝛼′𝑋 + 𝛽′𝑍 + 𝜖, 𝜖 ⊥ 𝑍.

Standard statistical tools can implement such tests; see the R

Dagitty Notebook and the Python Pgmpy Notebook 7.7.1 for
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13: A fix-intervention extends the

do-intervention by retaining the

natural version of the variable

while creating an intervention ver-

sion. In contrast, the original do-

intervention, introduced by Pearl,

erases the natural version by replac-

ing it entirely with the intervention

version.

examples.

Remark 7.3.1 (Equivalence of Local and Global Markov Prop-

erties) The local Markov property, Markov factorization, and

global Markov property are equivalent [7]. Thus, any of these

properties can be used to assess the validity of the Markov

structure.

7.4 Counterfactuals and Identification by

Conditioning

Counterfactuals

In this subsection, we focus on counterfactuals induced by fix
interventions, a concept that builds on the foundation of causal

reasoning.
13

This approach allows us to explore hypothetical

scenarios while preserving the underlying structure of the

original model, making it particularly useful for understanding

causal effects in complex systems.

Definition 7.4.1 (Counterfactual ASEM Induced by a Fix

Intervention) The intervention fix(𝑋𝑗 = 𝑥 𝑗) on an ASEM creates
a counterfactual ASEM (CF-ASEM) defined by a modified DAG,
known as a Single World Intervention Graph (SWIG):

G̃(𝑥 𝑗) := (�̃� , �̃�),

along with a collection of counterfactual variables {𝑋∗
𝑘
}𝑘∈𝑉 ∪{𝑋∗𝑎}.

Here, the node 𝑋𝑗 is split into two distinct entities: 𝑋∗
𝑗

:= 𝑋𝑗 ,
representing the natural value, and a new deterministic node 𝑎
with 𝑋∗𝑎 := 𝑥 𝑗 , representing the intervened value. The construction
proceeds as follows:

▶ The intervention node 𝑋∗𝑎 inherits only the outgoing edges
from 𝑋𝑗 (i.e., 𝑒𝑎𝑖 = 𝑒 𝑗𝑖 for all 𝑖) and has no incoming edges
(𝑒𝑖𝑎 = 0 for all 𝑖), reflecting that it is fixed by the intervention.

▶ The node 𝑋∗
𝑗

inherits only the incoming edges from 𝑋𝑗 (i.e.,
𝑒𝑖 𝑗 = 𝑒𝑖 𝑗 for all 𝑖) and has no outgoing edges (𝑒 𝑗𝑖 = 0 for all
𝑖), preserving its dependence on its original causes.

▶ All remaining edges are preserved: 𝑒𝑖𝑘 = 𝑒𝑖𝑘 for all 𝑖 and for
all 𝑘 ≠ 𝑗 , 𝑘 ≠ 𝑎, ensuring the rest of the graph structure
remains intact.
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▶ The counterfactual variables are assigned according to

𝑋∗𝑘 := 𝑓𝑘(𝑃𝑎∗𝑘 , 𝜖𝑘), for 𝑘 ≠ 𝑎,

where 𝑃𝑎∗
𝑘

denotes the parents of 𝑋∗
𝑘

under �̃�, adapting the
structural equations to the new graph.

Interventions like fix(𝑋𝑗 = 𝑥 𝑗) induce new counterfactual

distributions for the endogenous variables, offering a win-

dow into what would happen under specific conditions. Non-

descendants of𝑋𝑗 remain unchanged, so𝑋∗
𝑘
= 𝑋𝑘 for all𝑋𝑘 that

are not downstream of 𝑋𝑗 . For simplicity, we drop the "stars"

from counterfactual variables that exactly replicate their factual

counterparts, streamlining notation where the intervention has

no effect.

Ignorability by D-Separation in Counterfactual

DAGs

Consider any variable 𝐷 in an ASEM as a treatment of interest

and one of its descendants 𝑌 as an outcome we wish to study.

Our goal is to identify the causal effect of𝐷 on𝑌, which requires

finding an adjustment set 𝑆 that ensures conditional exogeneity,

or ignorability. This condition is formally expressed as:

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆,

meaning that, given 𝑆, the counterfactual outcome 𝑌(𝑑) is

independent of the natural value of 𝐷. This independence

allows us to isolate the causal impact of setting 𝐷 = 𝑑.

To achieve this, we construct the counterfactual DAG in-

duced by the fix(𝐷 = 𝑑) intervention, which replaces 𝐷

with the fixed value 𝑑 in all structural equations defining

its descendants. This modified graph, or SWIG, reflects the

system under the intervention. If, in this SWIG, 𝑌(𝑑) is d-

separated from𝐷 by a set 𝑆, then the conditional exogeneity

condition holds:

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆.

D-separation here means that all paths between 𝐷 and

𝑌(𝑑) are blocked by 𝑆, ensuring no confounding influences

remain.

Given conditional exogeneity, we can identify counterfactual

expectations, such as E[𝑔(𝑌(𝑑)) | 𝑆 = 𝑠], from observed data,
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𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷

𝑀

𝑌

Figure 7.7: A DAG in Pearl’s Exam-

ple.

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷 𝑑

𝑀(𝑑)

𝑌(𝑑)

Figure 7.8: The DAG induced by the

fix(𝐷 = 𝑑) intervention in Pearl’s

Example.

specifically by the regression E[𝑔(𝑌) | 𝑆 = 𝑠, 𝐷 = 𝑑], provided

the positivity condition p(𝑠, 𝑑) > 0 holds. This positivity ensures

that every combination of 𝑆 = 𝑠 and 𝐷 = 𝑑 we condition on

is observable in the data. By exogeneity and consistency, we

have:

E[𝑔(𝑌(𝑑)) | 𝑆 = 𝑠] = E[𝑔(𝑌) | 𝑆 = 𝑠, 𝐷 = 𝑑],

and integrating over 𝑆 gives the average potential outcome:

E[𝑔(𝑌(𝑑))] = E

[
E[𝑔(𝑌) | 𝑆, 𝐷 = 𝑑]

]
,

assuming p(𝑠, 𝑑) > 0 for all 𝑠 in the support of 𝑆 | 𝐷 = 𝑑. This

process links hypothetical outcomes to measurable quantities.

The following theorem, essentially due to [8], formalizes this

approach.

Theorem 7.4.1 (A Counterfactual Criterion for Identification

by Conditioning) Consider any ASEM with DAG G. Re-label
the treatment node 𝑋𝑗 as 𝐷, and let 𝑌 be any descendant of 𝐷
representing the outcome. Construct the SWIG G̃(𝑑) induced by the
fix(𝐷 = 𝑑) intervention, and let 𝑆 be any subset of nodes common
to both G and G̃(𝑑) such that 𝑌(𝑑) is d-separated from 𝐷 by 𝑆 in
G̃(𝑑). Then:

▶ The conditional exogeneity condition holds:

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆.

▶ The conditional average potential outcome is identified by
the corresponding regression:

E[𝑔(𝑌(𝑑)) | 𝑆 = 𝑠] = E[𝑔(𝑌) | 𝐷 = 𝑑, 𝑆 = 𝑠],

for all 𝑠 with p(𝑠, 𝑑) > 0 and for all bounded functions 𝑔.

This criterion is "complete" in that it captures all valid adjust-

ment sets excluding descendants of 𝐷. As discussed in [8],

it encompasses all adjustment sets verifiable through an im-

plementable intervention, providing a robust tool for causal

inference in practice.

Example 7.4.1 (Pearl’s Example) Consider the DAG in Fig-

ure 11.1 (introduced earlier as Pearl’s Example) and its corre-

sponding ASEM (not explicitly written). We aim to estimate

the causal effect of 𝐷 on 𝑌, i.e., the mapping 𝑑 ↦→ 𝑌(𝑑). The
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SWIG induced by the fix(𝐷 = 𝑑) intervention is shown in

Figure 7.8. In this counterfactual graph, valid adjustment sets

𝑆 include:

{𝑋1, 𝑋2}, {𝑋2, 𝑋3}, {𝑋2, 𝑍2}, {𝑋2, 𝑍1},

since each set blocks all open paths between 𝑌(𝑑) and 𝐷.

Conditioning on 𝑋2 alone is insufficient because, although

it blocks the inner backdoor paths, it opens an outer path

where 𝑋2 acts as a collider; adding 𝑋1, 𝑋3, 𝑍1, or 𝑍2 blocks

this additional path, ensuring ignorability.

Remark 7.4.1 (Useful Limitation of the Counterfactual Cri-

terion Approach
★
) A surprisingly useful limitation of the

counterfactual DAG approach is that it avoids selecting valid

yet unhelpful control variables for adjustment. Consider the

simple DAG

𝑍← 𝐷 → 𝑌,

and its corresponding counterfactual DAG

𝑍(𝑑) ← 𝑑→ 𝑌(𝑑).

Under the counterfactual approach, no adjustment is re-

quired—in other words, the empty set is a valid adjustment

set: 𝑌(𝑑) ⊥⊥ 𝐷. However, we know that 𝑍 is a valid control.

We can deduce its validity by considering a cross-world DAG

that combines factual and counterfactual variables from the

respective ASEMs:

𝑍 𝐷 𝑌

𝑍(𝑑) 𝑑 𝑌(𝑑)

𝜖𝑍 𝜖𝑌

In this cross-world DAG, 𝑌(𝑑) is 𝑑-separated from 𝐷 by 𝑍, so

that

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑍.

Thus, while 𝑍 is a valid control variable, it is arguably super-

fluous, as it does not add useful information about 𝑌(𝑑). In

fact, adjusting for 𝑍 can reduce the precision of our estimates

of the average causal effect of 𝐷 on 𝑌.
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14: Specifically, Pearl constructs a

modified DAG by removing all out-

going edges from𝐷 and then exam-

ines whether the remaining paths

from 𝐷 to 𝑌 are blocked, meaning

they are d-separated. This modi-

fied DAG is essentially equivalent

to the counterfactual DAG used in

the fix-intervention framework.

Ignorability by Backdoor Blocking in Factual DAG

Pearl [7] developed a powerful and practical criterion for es-

tablishing conditional exogeneity/ignorability by analyzing

the structure of the factual DAG, without needing to construct

a counterfactual DAG. This method, known as the backdoor

criterion, simplifies the process of identifying valid adjustment

sets and is widely applied in causal inference studies, espe-

cially when working directly with observed data. We note that

the proof provided by Pearl [2] itself relies on the concept of

d-separation within a counterfactual DAG.
14

This approach un-

derscores the deep connection between the backdoor criterion

and counterfactual reasoning.

Theorem 7.4.2 (Backdoor Criterion) Consider any ASEM and
its associated DAG. Re-label a treatment node 𝑋𝑗 as 𝐷, and let 𝑌,
an outcome of interest, be any descendant of 𝐷. The adjustment set
𝑆 is valid, meaning it implies conditional ignorability

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆,

if the backdoor criterion is satisfied: No element of 𝑆 is a descendant
of 𝐷, and all backdoor paths from 𝑌 to 𝐷 are blocked by 𝑆.

A backdoor path, recall, is one that starts at 𝐷 and ends with

an arrow pointing into 𝐷, representing confounding influences.

The key insight is that blocking these backdoor paths elimi-

nates confounding, leaving only the direct and indirect causal

channels from 𝐷 to 𝑌. This approach is intuitive and efficient

because it focuses on the factual DAG structure.

Example 7.4.2 (Pearl’s Example Again, Using the Backdoor

Criterion) The graph in Figure 11.1 has two backdoor paths

from 𝐷 to 𝑌: the inner path

𝐷 ← 𝑋2 → 𝑌,

and the more complex outer path

𝐷 ← 𝑋1 ← 𝑍1 → 𝑋2 ← 𝑍2 → 𝑋3 → 𝑌.

Conditioning on 𝑋2 alone does not suffice to identify the

causal effect of 𝐷 on 𝑌. While it blocks the inner backdoor

path, it opens the outer path by conditioning on 𝑋2, a collider

in that sequence. To resolve this, we must also condition

on an additional variable like 𝑋1, 𝑋3, 𝑍1, or 𝑍2 to block the
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outer path. Thus, valid adjustment sets include 𝑆1 = {𝑋1, 𝑋2}
or 𝑆2 = {𝑋2, 𝑋3}. Identifying other valid sets is left as an

exercise. Note that conditioning on 𝑀 is invalid since 𝑀 is a

descendant of 𝐷, representing an intermediate outcome that

could bias the effect estimate.

Applying the backdoor criterion systematically can yield all

minimal adjustment sets needed for identification; see [7]. How-

ever, it may not capture every possible valid set. Let’s revisit

the DAG: 𝑍 ← 𝐷 → 𝑌. Here, conditioning on 𝑍 does not

satisfy the backdoor criterion because 𝑍 is descendant of 𝐷,

but it is a valid control variable. Here 𝐷 directly causes 𝑌, and

there is no need to condition on 𝑍. If we do condition 𝑍, it

does not confound the direct effect. However, conditioning on

𝑍 may lower the precision with which we estimate the effect

of 𝐷 on 𝑌, thereby making 𝑍 potentially unhelpful, but not

invalid control. This highlights the fact that this "limitation" of

the backdoor approach is useful in disregarding controls that

are not useful. As we had seen, the same comment applies to

the counterfactual approach.

7.5 Notes

We adopt the framework pioneered by J. Pearl in his seminal

Biometrika paper [2], with a few minor adaptations to enhance

its applicability. First, we emphasize fix interventions over do

interventions because fix interventions preserve the original

“natural” variable alongside the intervened version, providing

a seamless transition to counterfactual DAGs. This preservation

enables us to systematically deduce conditional ignorability

conditions, such as 𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆, directly from the graph

structure. Fix interventions, as an extension of Pearl’s earlier

do-interventions, were formalized by Heckman and Pinto [9]

and by Robins and Richardson [8]. Notably, elements of fix inter-

ventions also appear in Pearl’s original work [2], particularly in

his theoretical analysis and proofs, where he employs graph ma-

nipulations known as the do-calculus to explore counterfactual

scenarios.

The connection between structural equation models (SEMs)

and potential outcomes is encapsulated in what J. Pearl [7] calls

the First Law of Causal Inference. This principle asserts that

SEMs fully induce potential outcomes, highlighting that no

information is lost by beginning causal analysis with SEMs

rather than potential outcomes directly. In fact, starting with an

SEM offers a distinct advantage: it allows us to mathematically
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articulate contextual assumptions and derive conditional ignor-

ability, rather than simply assuming it upfront as is common in

potential outcomes frameworks. For instance, in empirical 401(k)

analyses, researchers often claim that potential outcomes are

independent of 401(k) eligibility given worker characteristics.

However, constructing a comprehensive DAG that captures the

full context reveals additional factors—such as firm characteris-

tics—that must also be conditioned on to ensure ignorability.

Thus, DAGs serve as a powerful tool to uncover critical details

that might be overlooked in a less structured potential outcomes

approach, grounding causal inference in a clearer and more

explicit model of the data-generating process.

The uses of DAGs in empirical work are very common in epi-

demiology, see e.g. [10] for a review, common in theoretical

work in computer science, and is much less common in em-

pirical economics, despite the first use dating back to 1928 in

the foundational work of Philip Wright [11]; there are recent

attempts to revive the interest in economics, see [12] and [13].

7.6 Additional Resources

Dagitty.Net is an excellent online resource for plotting and

analyzing causal DAG models. It contains many interesting

examples used in empirical analyses across various fields.

Causalfusion.Net is another valuable online resource for explor-

ing causal DAG models, covering several deviations from the

standard framework.

7.7 Notebooks

Notebook 7.7.1 (DAGs I) R: Dagitty Notebook employs the R

package "dagitty" to analyze Pearl’s Example (Figure 11.1) as

well as simpler ones. Python: Pgmpy Notebook employs the

analogue with Python package "pgmpy" and conducts the

same analysis. Both packages automatically list all conditional

independence in a DAG; these are obtained by using the

graphical d-separation criterion. We then go ahead and test

those restrictions assuming a linear ASEM structure. The

notebook also illustrates the analysis from the next chapter.

Notebook 7.7.2 (DAGs II) R: Dosearch Notebook employs

the R-package "dosearch" to analyze Pearl’s Example (Figure

http://www.dagitty.net/dags.html
https://causalfusion.net/
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dagitty.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dosearch.irnb
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11.1). This package automatically finds identification answers

to causal queries, allowing us to also answer these types

of queries under different data sources, sample selection,

and other deviations from the standard framework. Python:

Dosearch Notebook does the same thing by loading the R

"dosearch" package into Python.

7.8 Exercises

Exercise 7.8.1 (401(k) Example) Consider the DAG for the

401(k) example, but suppose now that there is an additional

arrow from𝑈 to 𝐷.

1. Write down the ASEM corresponding to the DAG.

State the joint distribution of all variables in the model,

exploiting the Markovian structure. What conditional

independence restrictions are implied by the model?

Are they testable?

2. Provide the counterfactual DAG (SWIG) for this DAG

corresponding to the Fix intervention and state the

corresponding ASEM. Using d-separation, determine

sufficient adjustment sets for identifying the average

causal effect of 𝐷 on 𝑌.

3. In the factual DAG, list all backdoor paths from 𝐷 to

𝑌. Identify sufficient adjustment sets for the average

causal effect of 𝐷 on 𝑌 using the "blocking backdoor

paths" approach.

4. Now suppose there is no arrow from 𝐹 to 𝑀, meaning

the match amount does not statistically depend on firm

characteristics. Determine the sufficient adjustment

sets using either the counterfactual approach or the

"blocking backdoor paths" approach. Which approach

do you find easier to use?

Exercise 7.8.2 (Pearl’s Example) Consider the DAG in Figure

11.1. Answer the following questions. The best way to answer

these question is to use computational packages (but please

explain the principles the package is using).

1. What are the testable implications of the assumptions

embedded in the model? Hint: The testable implications

are derived from the d-separation criterion.

2. Assume that only variables 𝐷, 𝑌, 𝑋2 and 𝑀 are mea-

sured, are there any testable implications?

3. Now assume only 𝐷, 𝑌, and 𝑋2 are measured. Are

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-dosearch.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-dosearch.ipynb
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15: We follow the proof sketch pre-

sented in Nevin L. Zhang’s lecture

notes, but rely on ASEMs to sim-

plify some arguments and supply

a proof for a key claim.

there any testable implications?

4. Now assume that all of the variables but 𝑋2 (7 in total)

are measured. Are there any testable restrictions?

5. Assume that an alternative model, competing with

Model 1, has the same structure, but with the 𝑋2 → 𝐷

arrow reversed. What statistical test would distinguish

between the two models?

Exercise 7.8.3 Work through the proof that d-separation

implies conditional independence in Section 7.B. Supply the

steps of the proof that were left as a homework or reading

exercise.

7.A Review of Conditional Independence

The following lemma reviews various ways in which conditional

independence can be established.

Lemma 7.A.1 (Equivalent Forms of Conditional Indepen-

dence) Variables 𝑋 and 𝑌 are conditionally independent

given 𝑍 if and only if one of the following conditions is met:

1. p(𝑥 | 𝑦, 𝑧) = p(𝑥 | 𝑧) if p(𝑦, 𝑧) > 0.

2. p(𝑥 | 𝑦, 𝑧) = 𝑓 (𝑥, 𝑧) for some function 𝑓 .

3. p(𝑥, 𝑦 | 𝑧) = p(𝑥 | 𝑧)p(𝑦 | 𝑧) if p(𝑧) > 0.

4. p(𝑥, 𝑦 | 𝑧) = 𝑓 (𝑥, 𝑧)𝑔(𝑦, 𝑧) for some functions 𝑓 and 𝑔.

5. p(𝑥, 𝑦, 𝑧) = p(𝑥 | 𝑧)p(𝑦 | 𝑧)p(𝑧) if p(𝑧) > 0.

6. p(𝑥, 𝑦, 𝑧) = p(𝑥, 𝑧)p(𝑦, 𝑧)/p(𝑧) if p(𝑧) > 0.

7. p(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑧)𝑔(𝑦, 𝑧) for some functions 𝑓 and 𝑔.

As a reading exercise prove the equivalence of (1) and (2), of (1)

and (7), and of any other pair.

7.B Theoretical Details of d-Separation
★

Here we explain why d-separation implies conditional indepen-

dence.
15

Lemma 7.B.1 (Easy Form of d-Separation) Let X, Y, and Z be

three disjoint sets of variables in an ASEM such that their

union is an ancestral set, that is, for any 𝑋 ∈ X ∪ Y ∪ Z and

https://cse.hkust.edu.hk/bnbook/pdf/l03.h.pdf
https://cse.hkust.edu.hk/bnbook/pdf/l03.h.pdf
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16: Suppose that any such node has

a parent in Y. If it were a node

in X, then we get a violation of d-

separation. If it were a node in Z1,

then we have that Z1 has one par-

ent in X and one parent in Y and

therefore it is a collider that was in-

cluded in Z, violating d-separation.

17: Suppose that any such node has

a parent in X. By the definition of Z1

it has to be a node in Y. But then we

have that a node in Y has a parent

in X, violating d-separation.

X Y

Z1

Z2

̸

̸

Figure 7.9: Pictorial representation

of key argument in Lemma 7.B.1.

18: Prove this as a reading exercise

by integrating over the variables in

U in reverse order with respect to

the DAG ordering.

19: Prove this as a reading exercise,

i.e., prove bullet (7) of Lemma 7.A.1.

𝑋′ < 𝑋 we have 𝑋′ ∈ X∪Y∪Z. If Z 𝑑-separates X and Y, then

X ⊥⊥ Y | Z.
Proof. Let Z1 be the set of nodes in Z that have parents in X. And

let Z2 = Z\Z1.

Because Z d-separates X and Y, we have that (see Figure 7.9):

▶ For any𝑊 ∈ X ∪ Z1, 𝑃𝑎𝑊 ⊆ X ∪ Z;
16

▶ For any𝑊 ∈ Y ∪ Z2, 𝑃𝑎𝑊 ⊆ Y ∪ Z.
17

Let U denote the set of variables not included in X, Y, or Z. We

then obtain a factorization

p(x, z, y) =
∫ ∏

𝑊∈U∪X∪Y∪Z
p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 )𝑑u

=

∫ ∏
𝑊∈U

p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 )𝑑u

×
∏

𝑊∈X∪Z1

p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 )

×
∏

𝑊∈Z2∪Y
p(𝑤 | 𝑃𝑎𝑊 = 𝑝𝑎𝑊 ),

where in the last equality we used the fact that u does not appear

at all in the second and third factors, since X∪Y∪ Z is ancestral.

Moreover, the second factor is a function of x and z alone and

the third factor is a function of y and z alone. The integral is 1

by total probability.
18

It follows that X ⊥⊥ Y | Z.
19

Now we restate the main claim we’d like to demonstrate, which

is that d-separation implies conditional independence.

Global Markov. Let 𝑋 and𝑌 be two variables and Z be a set

of variables that does not contain 𝑋 or 𝑌. If Z d-separates

𝑋 and 𝑌, then

𝑋 ⊥⊥ 𝑌 | Z

Proof of Theorem 7.3.2.

Let X be the set of all ancestors of {𝑋,𝑌} ∪ Z that are not
d-separated from 𝑋 by Z. Let Y be the set of all ancestors of

{𝑋,𝑌} ∪ Z that are neither in X nor in Z.

Key Claim: The set Z d-separates the sets X and Y.

The claim follows from the careful use of the definition of

d-separation, and is proven below.
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20: Prove this explicitly, as a read-

ing exercise, by integrating over all

variables in X\{𝑋} and Y\{𝑌} and

invoking Lemma 7.A.1.

21: In this proof, we denote with

𝑈 - - 𝑉 a path from a node 𝑈 to

a node 𝑉 and with 𝑈 99K 𝑉 a di-

rected path from𝑈 to 𝑉 .

Given the key claim, Lemma 7.B.1 implies that X ⊥⊥ Y | Z, since

X∪Y∪Z is ancestral by its exhaustive construction. This implies

that there must exist functions 𝑓 (x, z) and 𝑔(z, y) such that

p(x, z, y) = 𝑓 (x, z)𝑔(z, y).

Since 𝑋 is in X and 𝑌 in Y, the conclusion is reached.
20

Proof of the Key Claim. Suppose that Z does not d-separate the

sets X and Y and that there exists a node 𝑋′ ∈ X which is

not d-separated from some node 𝑌′ ∈ Y. Thus, there is an

open path 𝑋 - - 𝑋′,21
and an open path 𝑋′ - - 𝑌′. Consider the

concatenation of these two paths. If 𝑋′ is not a collider on this

concatenated path, then the path𝑋 - - 𝑋′ - - 𝑌′ is also open, and

therefore𝑋 is not d-separated from𝑌′, which is in contradiction

with the definition of X and Y. Thus 𝑋′ has to be a collider on

this concatenated path. Moreover, note that since we are only

restricting our analysis to the ancestral set 𝐴𝑛{𝑋,𝑌}∪Z, we have

that 𝑋′ must be an ancestor of either Z or 𝑌 or 𝑋:

If𝑋′ is an ancestor of some node in Z then the path𝑋 - - 𝑋′ - - 𝑌′

is again open, leading to a contradiction with the definition of

X and Y.

If 𝑋′ is an ancestor of 𝑌, then there is a directed path 𝑋′ 99K 𝑌.

If that path is open, then there is an open path 𝑋 - - 𝑋′ 99K 𝑌,

violating the fact that Z was d-separating 𝑋 from 𝑌. For the

path to be closed, it must be that some node 𝑍 ∈ Z is on the

path. However, in this case 𝑋′ is an ancestor of a node in Z,

which has already been excluded.

Finally, if 𝑋′ is an ancestor of 𝑋, then there exists a directed

path 𝑋′ 99K 𝑋. This path also has to be open, as if a node in Z
existed on that path, then 𝑋′ would be an ancestor of a node

in Z, which has been excluded. However, in this case, we have

an open path 𝑌′ - - 𝑋′ 99K 𝑋, from 𝑌′ to 𝑋, which violates the

definition of X and Y.

7.C Faithfulness and Causal Discovery

Given that DAGs effectively encode conditional independence

relations, it is tempting to try to infer conditional independence

directly from the data. Causal discovery refers to methods that

indeed attempt to learn conditional independence relationships

from data with one application being attempting to recover

causal structures. The possibility of recovering causal structures
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perfectly from the population data critically relies on the concept

of faithfulness.

Recall that d-separation implies conditional independence, but

the reverse implication

𝑌 ⊥⊥ 𝑋 | 𝑆 =⇒ (𝑌 ⊥⊥𝑑 𝑋 | 𝑆)G (7.C.1)

is not true in general. If we restrict attention to the set of

distributions 𝑝 of random variables associated with graph G
such that implication (7.C.1) holds, we are said to impose the

faithfulness assumption on p.

Example 7.C.1 (Unfaithfulness) A trivial example is the DAG

𝑋 → 𝑌

where

𝑌 := 𝛼𝑋 + 𝜖𝑌 ; 𝑋 := 𝜖𝑋 ;

with 𝜖𝑋 and 𝜖𝑌 independent standard normal variables. Con-

sider 𝑆 to be the empty set. In this model we have that𝑌 ⊥⊥ 𝑋
when 𝛼 = 0, but 𝑌 and 𝑋 are not d-separated in the DAG

𝑋 → 𝑌. The distribution p of (𝑌, 𝑋) corresponding to 𝛼 = 0

is said to be unfaithful. However, the exceptional point 𝛼 = 0

has a measure 0 on the real line, so this exception is said to

be non-generic.

The observation about the simple example above generalizes: If

probabilities p themselves are viewed as generated by Nature

as a draw from a continuum P, where each p ∈ P factorizes

according to G, then the set of models where the reverse impli-

cation (7.C.1) does not hold has measure zero. This observation

motivates the argument that the faithfulness assumption is a

weak requirement; that is, a given p is "very unlikely" to be

unfaithful.

Remark 7.C.1 (Causal Discovery) The use of the faithfulness

assumption should allow us to discover the equivalence class

of the true DAG from the population distribution p: We

can compute all valid conditional independence relations

and then discover the equivalence class of DAGs. See, for

example, the PC algorithm [14] for an explicit causal discovery

algorithm and the review provided in [15]. We can then apply

contextual knowledge to further orient the edges of the graph.

Even though the set of unfaithful distributions has measure

zero, the neighborhood of this set may not be small in high-
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Figure 7.10: Uhler et. al [16]: A set of "unfaithful" distributions p in the simple triangular Gaussian SEM/DAG:

𝑋1 → 𝑋2 , (𝑋1 , 𝑋2) → 𝑋3.

22: See Uhler et al’s [16] figure; re-

produced in Figure 7.10. The set is

parameterized in terms of the co-

variance of (𝑋1 , 𝑋2 , 𝑋3). The right

panel shows the set of unfaithful

distributions, and the three other

panels show 3 of 6 components

of the set. Each of the cases cor-

responds to the non-generic case

which would make faithfulness fail,

leading to discovery of the wrong

DAG structure. While the exact set-

ting where faithfulness would fail

is non-generic, there are many dis-

tributions that are "close" to these

unfaithful distributions. This obser-

vation means that, in finite samples,

we are not able distinguish models

that are close to the set of unfaithful

distributions from unfaithful distri-

butions and may thus also discover

the wrong DAG structure and cor-

respondingly draw incorrect causal

conclusions.

dimensional graphs, which creates difficulty in inferring the

DAG structure from an estimated version p̂.

Example 7.C.2 (Unfaithfulness Continued) In the trivial exam-

ple above, suppose that we have that �̂� = .1 and �̂� ∼ 𝑁(𝛼, 𝜎2)
where 𝜎 = .1. Then we can’t be sure whether 𝛼 = 0, 𝛼 = .1,

or 𝛼 equals any other number, though say a 95% confidence

interval would have 𝛼 between−.1 and .3. Therefore, we can’t

be sure whether the true model is

𝑋 → 𝑌 or 𝑋 𝑌.

Informally speaking, it is impossible to discover the true graph

structure in this example when 𝛼 ≈ 0. In econometrics jargon,

this statement amounts to saying that we can’t distinguish

exact exclusion restrictions from "approximate" exclusion

restrictions.

Thus, it is hard to distinguish exact independence from ap-

proximate independence with finite data. In high-dimensional

graphs, the possibility that �̂� lands in the "near-unfaithful" re-

gions can be substantial, as Uhler et. al.[16]’s analysis shows.
22

The observations above motivate a form of sensitivity analysis

– e.g., Conley et al. [17] – where one replaces exact exclusion

restrictions by approximate exclusion restrictions that can’t be

distinguished from exact exclusion restrictions and examines

the sensitivity of causal effect estimates.



Bibliography

[1] Judea Pearl and Dana Mackenzie. The Book of Why. Pen-

guin Books, 2019 (cited on page 164).

[2] Judea Pearl. ‘Causal diagrams for empirical research’. In:

Biometrika 82.4 (1995), pp. 669–688 (cited on pages 165,

171, 181, 182).

[3] Trygve Haavelmo. ‘The probability approach in econo-

metrics’. In: Econometrica 12 (1944), pp. iii–vi+1–115 (cited

on page 165).

[4] Victor Chernozhukov, Carlos Cinelli, Whitney Newey,

Amit Sharma, and Vasilis Syrgkanis. ‘Long Story Short:

Omitted Variable Bias in Causal Machine Learning’. In:

arXiv preprint arXiv:2112.13398 (2023) (cited on page 171).

[5] Thomas Verma and Judea Pearl. Influence diagrams and
d-separation. Tech. rep. Cognitive Systems Laboratory,

Computer Science Department, UCLA, 1988 (cited on

page 175).

[6] Rajen D. Shah and Jonas Peters. ‘The hardness of condi-

tional independence testing and the generalised covari-

ance measure’. In: Annals of Statistics 48.3 (2020), pp. 1514–

1538 (cited on page 176).

[7] Judea Pearl. Causality. Cambridge University Press, 2009

(cited on pages 177, 181, 182).

[8] Thomas S. Richardson and James M. Robins. Single world
intervention graphs (SWIGs): A unification of the counterfac-
tual and graphical approaches to causality. Working Paper

No. 128, Center for the Statistics and the Social Sciences,

University of Washington. 2013. url: https://csss.uw.

edu/files/working-papers/2013/wp128.pdf (cited

on pages 179, 182).

[9] James Heckman and Rodrigo Pinto. ‘Causal analysis

after Haavelmo’. In: Econometric Theory 31.1 (2015 (NBER

2013)), pp. 115–151 (cited on page 182).

[10] Peter WG Tennant, Eleanor J Murray, Kellyn F Arnold,

Laurie Berrie, Matthew P Fox, Sarah C Gadd, Wendy J

Harrison, Claire Keeble, Lynsie R Ranker, Johannes Tex-

tor, et al. ‘Use of directed acyclic graphs (DAGs) to identify

confounders in applied health research: review and rec-

ommendations’. In: International journal of epidemiology
50.2 (2021), pp. 620–632 (cited on page 183).

https://csss.uw.edu/files/working-papers/2013/wp128.pdf
https://csss.uw.edu/files/working-papers/2013/wp128.pdf


Bibliography 191

[11] Philip G. Wright. The Tariff on Animal and Vegetable Oils.
New York: The Macmillan company, 1928 (cited on page 183).

[12] Paul Hünermund and Elias Bareinboim. ‘Causal inference

and data fusion in econometrics’. In: The Econometrics
Journal (2023), utad008 (cited on page 183).

[13] Jaap H Abbring, Victor Chernozhukov, and Iván Fernández-

Val. ‘Philip G. Wright, directed acyclic graphs, and instru-

mental variables’. In: Econometrics Journal (2025) (cited

on page 183).

[14] Peter Spirtes, Clark N. Glymour, Richard Scheines, and

David Heckerman. Causation, Prediction, and Search. MIT

Press, 2000 (cited on page 188).

[15] Clark Glymour, Kun Zhang, and Peter Spirtes. ‘Review of

causal discovery methods based on graphical models’. In:

Frontiers in Genetics 10 (2019), p. 524 (cited on page 188).

[16] Caroline Uhler, Garvesh Raskutti, Peter Bühlmann, and

Bin Yu. ‘Geometry of the faithfulness assumption in

causal inference’. In: Annals of Statistics 41.2 (2013), pp. 436–

463 (cited on page 189).

[17] Timothy G. Conley, Christian B. Hansen, and Peter E.

Rossi. ‘Plausibly exogenous’. In: Review of Economics and
Statistics 94.1 (2012), pp. 260–272 (cited on page 189).


