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"the scientific [. . . ] problem of causality is essen-

tially a problem regarding our way of thinking,

not a problem regarding the nature of the exterior

world."

– Ragnar Frisch [1].

Here we present the linear structural equation model framework

and causal diagrams. The advantage of these models is they

are closely related to underlying structural models commonly

used in economics and other fields. They allow for transparent

derivation of the conditional ignorability assumption from the

structure of the model. While linearity is imposed in this chapter,

it will be dispensed with in later chapters.
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1: The subtle difference here is that

𝑈 does not depend on the index 𝑝,

though we could make 𝑈 be in-

dexed by 𝑝 at the cost of more com-

plicated exposition. The distinction

drawn is not superficial. Later on,

when we discuss models with in-

struments, the dependence of𝑈 on

𝑝 can create non-trivial problems

which are not present in this sec-

tion.

6.1 Structural Equation Modelling and

Conditional Exogeneity

Basic ideas that appeared in econometrics between the 20s and

40s (P. Wright [2], S. Wright [3], J. Tinbergen [4], T. Haavelmo

[5]) provide another take on and language for causality that is

closely related to the potential outcomes framework.

A Simple Triangular Structural Equation Model

(TSEM)

We illustrate the basic ideas using a simple model of a house-

hold’s (say weekly) demand for gasoline, motivated by Haus-

man and Newey [6].

We start with a log-linear (Cobb-Douglas [7]) model for log-

demand 𝑦 given the log-price 𝑝

𝑦(𝑝) := 𝛿𝑝,

where 𝛿 is the elasticity of demand. Demand is random across

households, and we may model this randomness as

𝑌(𝑝) := 𝛿𝑝 +𝑈, E[𝑈] = 0, (6.1.1)

where𝑈 is a stochastic shock that describes variation of demand

across households (or across time, but assume that we are just

looking at a particular time point). We immediately recognize

that 𝑌(𝑝) plays the same role as a potential outcome in Rubin’s

potential outcome model.
1

The stochastic function

𝑝 ↦→ 𝑌(𝑝)

describes a household’s log-demand at a given log-price 𝑝. The

expected log-demand at log-price 𝑝 is given by E[𝑌(𝑝)] = 𝛿𝑝.

The function encodes various structural causal effects: If we

change 𝑝 from 𝑝0 to 𝑝1, the expected demand change would

be

E[𝑌(𝑝1)] − E[𝑌(𝑝0)] = 𝛿(𝑝1 − 𝑝0).

Model (6.1.1) is very simple, and we may want to introduce

covariates to capture other observable factors that may be asso-

ciated with demand. That is, we may think there are observable

parts of the stochastic shock, characterized by 𝑋 , which help us

predict household demand. Leading examples are household
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2: At a general level, gasoline

prices are determined by aggregate

supply and demand conditions,

with small local geographic adjust-

ments (e.g., gasoline prices in areas

with higher prices of land may be

higher than in other areas to reflect

the higher land costs for gasoline

stations). Conditional on being in a

given small geographic region, we

may think of price fluctuations as

independent of household-specific

demand shocks.

characteristics. For example, we may think demand is associated

with features such as family size, income, number of cars, or

geographical location. We can incorporate these features by

modelling 𝑈 = 𝑋′𝛽 + 𝜖𝑌 , where 𝜖𝑌 is independent of 𝑋 and

has mean zero. Employing this model structure, we can write

our augmented model as

𝑌(𝑝) := 𝛿𝑝 + 𝑋′𝛽 + 𝜖𝑌 , 𝜖𝑌 ⊥⊥ 𝑋. (6.1.2)

Equation (6.1.2) is a structural stochastic model of economic

outcomes. This model has nothing to do with regression

or a statistical predictive model. Rather, it is a model that

provides counterfactual predictions: If log-price is set to 𝑝,

then a household with characteristics 𝑋 can be predicted to

purchase

𝛿𝑝 + 𝑋′𝛽

log-units. Here 𝑝 is not a random variable – it is an index

describing potential values of the price.

Then we ask the question:

▶ What data (𝑌, 𝑃, 𝑋) on quantities, prices, and characteris-

tics should we collect to allow us to estimate the structural

parameter 𝛿?

Assumption 6.1.1 (Conditional Exogeneity) (i) (Consistency)
Suppose the observed variables (𝑌, 𝑃, 𝑋) are such that

𝑌 = 𝑌(𝑃)

i.e. the outcome is generated from the structural model, (ii) (Con-
ditional Exogeneity) The observed 𝑃 is determined outside of the
model, independently of 𝜖𝑌 conditional on 𝑋:

𝑃 ⊥⊥ 𝜖𝑌 | 𝑋 =⇒ 𝑃 ⊥⊥ {𝑌(𝑝)}𝑝∈ℝ | 𝑋

Assumption 6.1.1 is the econometric analog of ignorability.
2

In

the context of household demand, this condition requires that

𝑃 is determined independently of a household’s demand shock

𝜖𝑌 , conditional on characteristics 𝑋. This assumption seems

plausible for household level decisions, especially if we include

geography in the set of covariates 𝑋.
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3: A weaker starting condition

than the conditional exogeneity

condition for the above result is

simply

(𝑃, 𝑋) ⊥ 𝜖𝑌 .

That is, the observed 𝑃 and 𝑋 are

orthogonal to the structural error

𝜖𝑌 .

If the conditional exogeneity condition holds, then

𝑌 = 𝑌(𝑃) = 𝛿𝑃 + 𝑋′𝛽 + 𝜖𝑌 , 𝜖𝑌 ⊥ (𝑃, 𝑋).

This means that the projection parameters of 𝑌 on 𝑃 and 𝑋

coincide with the structural parameters 𝛿 and 𝛽.

We stress that our parameters 𝛿 and 𝛽 are not defined by

regression; they are defined by the model. Under the condi-

tional exogeneity condition, these parameters coincide with the

projection parameters.
3

We might further postulate a structural equation for log-prices:

𝑃(𝑥) := 𝑥′𝜈 + 𝜖𝑃 ,

where 𝑃(𝑥) is the stochastic price process indexed by a house-

hold characteristics and 𝜖𝑃 describes the centered stochastic

price shock. We assume that observed 𝑋 is independent of price

shock 𝜖𝑃 ,

𝑋 ⊥⊥ 𝜖𝑃 .

Independence between 𝜖𝑃 and observed 𝑋 implies that 𝜈 coin-

cides with the projection coefficient of 𝑃 on 𝑋.

The price process 𝑃(𝑥) captures the belief that prices faced by

households may differ depending on household characteristics.

Note that this notation allows for only a subset of household

characteristics to be systematically related to price; that is, we

can have 𝑃(𝑥) = 𝑃(𝑥1) for some subvector 𝑥1 of 𝑥. For example,

it seems reasonable that households located in different regions

would experience different prices, in which case 𝑥1 could repre-

sent a household’s geographic characteristics. Independence of

the price shock 𝜖𝑃 from observed 𝑋 may be plausible if house-

hold characteristics are determined well before gasoline prices

faced by individual households in any specific time period are

set.

Putting the equations together, we have a triangular struc-

tural equation model (TSEM):

𝑌 := 𝛿𝑃 + 𝑋′𝛽 + 𝜖𝑌 ,
𝑃 := 𝑋′𝜈 + 𝜖𝑃 ,
𝑋,

(6.1.3)

where 𝜖𝑌 , 𝜖𝑃 , and 𝑋 are mutually independent (or at least

uncorrelated) and determined outside of the model. They
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are called exogenous variables. 𝑌 and 𝑃 are determined

within the model and called the endogenous variables. The

structural parameter 𝛿 can be identified by linear regression

provided Var(𝜖𝑃) > 0, and the structural parameter 𝜈 can

be identified by linear regression provided Var(𝑋) > 0.

Under the conditions stated above the parameters of these

structural equations coincide with the projection parameters.

The jargon comparative statics refers

to the determination of how en-

dogenous variables change in re-

sponse to changes in exogenous

variables. Similarly, counterfactual
questions coincide with asking how

outcomes or endogenous variables

change when variables are set to

new values with other features of

the model remaining fixed; e.g. ask-

ing how demand changes when

price is set to some new value by

a firm with household character-

istics, price shocks, and demand

shocks unaffected.

What do we mean by the model being structural? The term

structural means that each of the equations is assumed to

provide comparative statics and answers to counterfactual

questions. Setting the right-hand-side variables to their

potential values, we have

𝑌(𝑝, 𝑥) := 𝛿𝑝 + 𝑥′𝛽 + 𝜖𝑌 ,
𝑃(𝑥) := 𝑥′𝜈 + 𝜖𝑃 .

The conceptual operation of "setting" or "fixing" the vari-

ables is supposed to leave the structure invariant. More

generally, the structural parameters are supposed to be

invariant to changes in the distribution of exogenous vari-

ables – 𝑋, 𝜖𝑌 , 𝜖𝑃 – that have been generated outside of the

model. Therefore, we can use these structural parameters

to generate counterfactual predictions.

6.2 Drawing the Model: Causal Diagrams,

aka DAGs

Sewall and Philip Wright [2], [3] would have depicted system

of equations (6.1.3) graphically as a causal (path) diagram as in

Figure 6.1. Observed variables are shown as nodes, causal paths

are shown by directed arrows, and the structural (causal) pa-

rameters are given by the symbols placed next to the arrows.

The graph represents a structural economic model that can

answer causal (comparative statics) questions. For example,

the elasticity parameter 𝛿 tells us how household demand will

respond to a firm setting a new price. Note that a firm setting a

new price will not alter household characteristics or the other

exogenous features of the model, and thus only the parameter

𝛿 is relevant for answering this question within the model.
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𝑃

𝑋

𝑌
𝛿

𝛽
𝜈

Figure 6.1: A simple causal diagram

representation of the TSEM for the

household gasoline demand exam-

ple.

We could have expanded the previous graph to include unob-

served shocks 𝜖𝑃 and 𝜖𝑌 as follows:

𝑃𝜖𝑃

𝑋

𝑌 𝜖𝑌
𝛿

𝛽
𝜈

Figure 6.2: An expanded causal di-

agram representation of the TSEM

that shows the unobserved shocks

𝜖𝑃 and 𝜖𝑌 as root nodes.

The graph initiates with the root nodes 𝜖𝑃 , 𝑋, and 𝜖𝑌 . The

absence of links between the root nodes signifies the orthogo-

nality between the nodes: namely, the absence of correlation.

Understanding the orthogonality structure between nodes is

an important input into identification of structural parameters

via projection. The nodes 𝑋 and 𝜖𝑃 are parents of 𝑃; the nodes

𝑃, 𝑋, and 𝜖𝑌 are parents of 𝑌. The node 𝑌 is a collider on all

paths, because it contains only incoming arrows.

The main effect of interest is 𝛿, which we call the structural

causal effect of 𝑃 on𝑌. This effect is identified after adjusting for

𝑋 . In terms of the graph above, there are two paths connecting

𝑃 and 𝑌:

𝑃 → 𝑌 and 𝑃 ← 𝑋 → 𝑌.

The second path is called a backdoor path because there is an arrow

pointing back to𝑃 from𝑋 . This connection indicates that there is

a common cause for 𝑃 and𝑌. Figuratively speaking, controlling

or adjusting for 𝑋 is said to be like "closing the backdoor path,"

shutting down the non-casual sources of statistical dependence

between 𝑌 and 𝑃.

This visual characterization of the adjustment for 𝑋 is due to

J. Pearl [8] and generalizes to much more complicated graphs.

We revisit these ideas throughout subsequent chapters.
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How do household characteristics impact our model? 𝑋

affects 𝑌 through two paths:

▶ the direct effect 𝛽 via 𝑋 → 𝑌,

▶ and the indirect effect 𝑣𝛿 via 𝑋 → 𝑃 → 𝑌.

The indirect effect is said to be "mediated" by 𝑃. Mediation structures appeared

right at the outset in the Wrights’

work [2], [3].

We saw in

Section 6.1 that we can identify 𝛿 and 𝛽 from projection of 𝑌

on 𝑃 and 𝑋, and we can identify 𝜈 by projection of 𝑃 on 𝑋.

Therefore both the direct and indirect effects are identified.

The total effect of 𝑋 on 𝑌 is

𝜈𝛿 + 𝛽,

which can be identified in this case by projection of 𝑌 on 𝑋. To

verify this, we plug the first equation from the TSEM in (6.1.3)

into the second equation producing

𝑌 = (𝜈𝛿 + 𝛽)′𝑋 +𝑉 ; 𝑉 = 𝜖𝑌 + 𝛿𝜖𝑃 .

We see that the composite disturbance 𝑉 is orthogonal to 𝑋,

𝑉 ⊥ 𝑋,

and, therefore, (𝜈𝛿+ 𝛽) coincides with the projection coefficient

in the projection of 𝑌 on 𝑋 . The latter point can be seen graphi-

cally: There are no "backdoor" paths from 𝑋 to 𝑌, so it is not

necessary to adjust or control for anything to identify the total

effect of 𝑋 on 𝑌.

In fact, while conditioning on 𝑃 would allow us to identify

the direct effect of 𝑋, 𝛽, it would prevent us from retrieving

the total effect 𝜈𝛿 + 𝛽. In empirical practice, we may think of

conditioning on 𝑃 as "conditioning on the outcome," as 𝑃 is

determined by its parents, including 𝑋, so may be thought of

as an outcome relative to 𝑋.

Remark 6.2.1 (Statistical Identification) Statistical identifi-

cation typically relies on a combination of orthogonality or

conditional independence restrictions and additional condi-

tions – referred to as "rank conditions" in some settings – that

ensure there is variation available for learning parameters of

interest. For example, we need that Var(𝜖𝑃) > 0 if we wish

to learn 𝛿 in the TSEM in (6.1.3), and we need overlap for

learning ATE as discussed in Chapter 5. Graphical methods

provide a tool for representing orthogonality and conditional



6 Causal Inference via Linear Structural Equations 151

𝐵

𝐶

𝑇

Figure 6.3: DAG with a collider rep-

resenting SEM (6.3.1).

4: Dividing by 2 may seem coun-

terintuitive, but it is correct. See the

Collider Bias Notebooks 6.6.1 for

detail.

independence relationships. They typically do not immedi-

ately reveal the additional rank-type conditions one would

use in establishing statistical point identification. Examining

the graphical structure does reveal what causal effects are

potentially learnable within the structure, and additional

restrictions, such as Var(𝜖𝑃) > 0 in the TSEM, can then be

deduced. Throughout the remainder of this book, we abstract

away from rank-type conditions when discussing graphi-

cal models and talk about identifying parameters from the

implied orthogonality or conditional independence structure.

To summarize, to learn a causal parameter, we must first define

the causal parameter of interest and then carefully consider the

choice of what to condition on to learn this effect. These choices

are particularly important given the existence of collider bias. The Notebooks 6.6.1 provide a sim-

ple simulated example of collider

bias based on the SEM (6.3.1).

6.3 When Conditioning Can Go Wrong:

Collider Bias, aka Heckman Selection

Bias

Consider the following SEM:

𝑇 := 𝜖𝑇

𝐵 := 𝜖𝐵

𝐶 := 𝑇 + 𝐵 + 𝜖𝐶

(6.3.1)

where 𝜖𝑇 , 𝜖𝐵, and 𝜖𝐶 are independent 𝑁(0, 1) shocks. Here the

average structural function for 𝑇, which does not depend on

what values 𝐵 might take, is zero,

E[𝑇] = 0.

Regression without conditioning on 𝐶 correctly identifies that

𝑇 is not causally impacted by 𝐵:

E[𝑇 | 𝐵 = 𝑏] = 0.

However, further conditioning on 𝐶 removes the causal inter-

pretation of the projection coefficient:
4

E[𝑇 | 𝐵, 𝐶] = (𝐶 − 𝐵)/2; =⇒ E[E[𝑇 | 𝐵 = 𝑏, 𝐶]] = −𝑏/2 < 0.

This regression suggests that, controlling for 𝐶, the predictive

effect of 𝐵 on 𝑇 is −1/2. This predictive effect is not a causal

effect.
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5: J. Heckman was awarded the

Nobel Memorial prize "for his de-

velopment of theory and methods

for analyzing selective samples."

Source: Nobelprize.org

Figure 6.4: Our SEM predicts that

this actor, A. Terminator, is (essen-

tially) the most talented actor in

Hollywood.

Collider bias illustrates that conditioning on outcomes may

produce the wrong conclusions about causality, so conditioning

on outcomes should be always approached with care. In econo-

metrics, collider bias is known as a form of sample selection

bias
5

("conditioning on endogenous variables" or Heckman

selection bias [9]).

A Serious Digression on Colliders. Within our toy SEM frame-

work, regression on a collider is clearly the wrong thing to do if

one wants to identify the causal effect of 𝐵 on 𝑇. However, we

do note that regression on a collider can be very useful for other

predictive tasks.

The following example draws on the discussion given in the

"Book of Why" [10] to illustrate collider bias.

Example 6.3.1 (Structural Model of Hollywood) Suppose that

the preceding SEM provides a cartoon depiction of people in

Hollywood where𝑇 denotes acting talent, 𝐶 denotes celebrity

(i.e. success or popularity), and 𝐵 denotes bonhomie (i.e.

approachability or friendliness). Note that the SEM indicates

that more talent and approachability cause more success.

Further, for a person to remain in Hollywood, we would

expect 𝐶 > 0. As shown above, the causal effect of 𝐵 on 𝑇 in

this SEM is 0. However, the best linear predictor of 𝑇 given 𝐵

conditional on 𝐶 > 0 is

≈ .6 − 𝐵/4.

That is, bonhomie and talent are negatively correlated in

Hollywood despite the fact that approachability does not

causally impact talent. This correlation is useful for making

predictions. For example, the individual depicted in the mar-

gin appears quite imposing and not approachable, perhaps

with 𝐵 = −20. We would then predict the expected value of

his talent to be 𝑡 ∈ [+5.6 ± 2], which is at least 3.6 standard

deviations above the average talent of zero in the overall

population within our model. From that, we should predict
that this person is an incredibly talented actor but should not

draw any conclusions about causality between 𝐵 and 𝑇.

The example illustrates how simple theoretical models are often

used in economics. Causal reasoning is made within a simple

model, such as the SEM (6.3.1). This reasoning then leads to

some testable restrictions, such as negative correlation between

𝑇 and 𝐵 conditional on 𝐶 > 0. Even though we may not believe

that the stylized model provides a complete model of reality, the

https://www.nobelprize.org/prizes/economic-sciences/2000/press-release/
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𝑆

𝐵 𝑌

𝑈

Figure 6.5: DAG with a collider rep-

resenting low birth-weight "para-

dox" Example 6.3.2.

implications of the simple model provide some insight into how

observed phenomena, such as a negative correlation between 𝑇

and 𝐵 conditional on 𝐶 > 0, may arise. Such reversion of the

correlation between two variables has been observed empirically

in several cases, a prominent one being the birth-weight paradox

[11] described below.

Example 6.3.2 (Birth-weight "paradox" [11]) In a study con-

ducted in 1991 in the US, it was found that infants born

to smokers had higher risk of low birth-weight (LBW) and

higher risk of infant mortality than infants born to non-

smokers. However, when looking at the sub-group of infants

with LBW, the comparison is reversed and the risk of infant

mortality is lower for infants born to smokers, than for infants

born to non-smokers. How is that possible? Does smoking

have a positive causal effect on infant mortality conditional

on LBW?

A more plausible alternative explanation can be uncovered

through the lens of SEMs and Causal Diagrams if one starts

to think of competing risks and collider bias. Let’s denote

with 𝑆 the smoking indicator, 𝑌 the infant death outcome,

and 𝐵 the low birth-weight indicator. We will also denote

with𝑈 an abstract variable corresponding to the multitude

of competing risks that can cause LBW. It is highly plausible

that smoking is a risk factor for LBW and also has a direct

effect on mortality. Moreover, LBW and the competing risk

factors can also have a direct effect on mortality. Putting these

factors together leads to the Causal Diagram depicted in

Figure 6.5. In this setting, an infant with a smoking parent

may be highly likely to have LBW caused by smoking. At the

same time, LBW can be much less frequent for non-smoking

parents. When we further focus in on the group of infants

of non-smoking parents with LBW, it is highly probable that

LBW was caused by some other competing risk which can

adversely affect mortality. Thus, conditioning on LBW, we

could essentially be comparing infants of smoking parents

without competing risks to infants of non-smoking parents

with competing risks.

To illustrate how the unconditional association between 𝑌

and 𝑆 uncovers the true causal effect, while conditioning on

𝐵 introduces bias and can even reverse the sign of the true

effect, let’s look at a simple linear SEM that corresponds to
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the causal diagram depicted in Figure 6.5:

𝑌 := 𝑆 + 𝐵 + 𝜅𝑈 + 𝜖𝑌

𝐵 := 𝑆 +𝑈 + 𝜖𝐵

𝑆 := 𝜖𝑆

𝑈 := 𝜖𝑈

(6.3.2)

where 𝜖𝑌 , 𝜖𝐵, 𝜖𝑆 and 𝜖𝑈 are independent𝑁(0, 1) shocks. Note

that if we simply project 𝑌 on 𝑆, then we recover the correct

positive causal effect of 2, since conditional exogeneity is

satisfied. However, when we project 𝑌 on 𝑆 and 𝐵, we learn a

CEF of the form:

E[𝑌 | 𝑆, 𝐵] = 𝑆 + 𝐵 + 𝜅E[𝑈 | 𝑆, 𝐵]
= 𝑆 + 𝐵 + 𝜅(𝐵 − 𝑆)/2 = (1 − 𝜅/2)𝑆 + (1 + 𝜅/2)𝐵.

If the competing risks increase infant mortality a lot, i.e.𝜅 ≫ 1,

then this projection recovers an erroneous large negative(!)

effect 1 − 𝜅/2 of smoking on mortality.

6.4 Wage Gap Analysis and

Discrimination

“The central question in any employment-discrimination

case is whether the employer would have taken the

same action had the employee been of a different

race (age, sex, religion, national origin etc.) and ev-

erything else had remained the same.” (In Carson

versus Bethlehem Steel Corp., 70 FEP Cases 921,

7th Cir. (1996) [12]).

Wage regressions are widely used by labor economists to char-

acterize the wage gap between men and women and to link

the wage gap to discrimination; see, e.g., [13] and [14]. Some

economists have asserted that it is wrong to study discrimi-

nation by doing wage gap regressions, e.g. [15], and that we

should instead look at the unconditional difference in outcomes

across groups. Their reasoning is based on the argument that

key job characteristics – e.g., education and occupation – are

determined in response to both a group identity and discrimi-

nation and are therefore (intermediate) outcomes. Controlling

for these characteristics may then introduce a form of selection

bias. Which of these two sets of economists is right?

In what follows, we present a simple SEM in (6.4.1), which

postulates that different groups receive equal wages if there
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𝐺

𝐷ℎ 𝐻

𝐷𝑤

𝑌

𝛼 = 1

𝛽 = 1

𝛾

𝛿

𝜃

𝜅

𝜆

Figure 6.6: A Simple Model of

Discrimination. Here 𝐺 denotes a

group (e.g., sex), 𝐻 is human capi-

tal, and 𝑌 is the wage. 𝐷𝑤 denotes

unobserved wage discrimination

occuring in the work place, and 𝐷ℎ

denotes unobserved discrimination

that occurs in the accumulation of

human capital.

6: 𝐻 can be easily made a vector

with a slightly more complicated

notation.

are no conditional productivity differences between the groups.

We will see that, in this SEM, wage gap regressions do uncover

well-defined discrimination effects that occur in wage-setting

mechanisms. In contrast, the unconditonal average wage gap

uncovers a more complicated causal object, which absorbs

discrimination in wage setting, discrimination in human cap-

ital and occupational acquisitions, as well as group specific

preferences for occupations.

Here we begin with the linear SEM and the equivalent DAG

shown in Figure 6.6:

𝑌 := 𝜅𝐷𝑤 + 𝜃𝐻 + 𝜖𝑌 ,
𝐷𝑤 := 𝛼𝐺 + 𝛿𝐻 + 𝜖𝐷𝑤 ,
𝐻 := 𝛾𝐺 + 𝜆𝐷ℎ + 𝜖𝐻 ,
𝐷ℎ := 𝛽𝐺 + 𝜖𝐷ℎ

,

𝐺,

(6.4.1)

where the shocks 𝜖𝑌 , 𝜖𝐷𝑤 , 𝜖𝐻 , 𝜖𝐷ℎ
, and 𝐺 are all mean zero

and uncorrelated.

The outcome 𝑌 is wage, 𝐺 is group (e.g., sex), 𝐻 is human

capital (a scalar index that includes labor-relevant character-

istics such as education, occupation, etc.),
6 𝐷𝑤 is latent wage

discrimination arising in the work-place, and 𝐷ℎ is latent dis-

crimination arising in acquisition of human capital. There could

be other observed confounders that we don’t show for the sake

of simplicity.

The discrimination variables𝐷𝑤 and𝐷ℎ are latent variables that

are important for our model but cannot be directly observed. We

maintain throughout that these variables are non-degenerate

and related to group identity 𝐺. Under these assumptions,
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7: For example, 90% of firefight-

ers in the US are men, which may

reflect a genuine preference for

this occupation among men. At the

same time, even preference for oc-

cupation may be a result of cultural

institutions that could themselves

be interpreted as discriminatory in

broader, cross-cultural, contexts.

the scale of these latent variables is non-zero but arbitrary,

so we normalize the effect 𝐺 → 𝐷𝑤 to unity, 𝛼 = 1, and the

effect 𝐺 → 𝐷ℎ to unity as well, 𝛽 = 1. There is no edge from

𝐺 to 𝑌, reflecting our assumption that there is no systematic

group difference in productivity conditional on 𝐻 and 𝐷𝑤 .

In the absence of productivity differences between workers,

economic reasoning suggests that they would be assigned the

same wage in a discrimination-free economy [16]. Thus, we

would expect 𝜅 = 0 in a discrimination-free economy in the case

that 𝐻 captures all sources of productivity differences between

workers.

Within this model, the parameter of interest is then the

causal or structural effect of discrimination on wages given

by

𝜅.

If 𝜅 ≠ 0, we can conclude that wages are assigned unfairly

within the framework of this SEM.

If we observed 𝐷𝑤 directly, we could learn the effect of dis-

crimination on wages, 𝜅, by regression of 𝑌 on 𝐷𝑤 and 𝐻.

Identification of 𝜅 from this regression follows from the back-

door criterion discussed in Section 6.2. We don’t observe 𝐷𝑤

directly, but we postulate that this variable is determined only

by 𝐺, 𝐻, and a stochastic shock. Dependence on 𝐻 captures the

idea that discrimination may be larger or smaller depending

on education level, profession, etc. We return to using this

additional structure to learn about 𝜅 below.

Discrimination may operate through channels other than simple

wage differences. For example, in the 1960s, there were rela-

tively few women or African American lawyers, a highly paid

occupation. Discrimination that operates through occupational

choice or human capital formation is captured by latent variable

𝐷ℎ . In our model, 𝐻, which captures productivity differences

between individuals, can be determined as a result of both

discrimination and group preferences.
7

The parameter 𝛾 then

captures the effect of group preferences on the formation of 𝐻,

while the effect of discrimination on 𝐻 is captured by 𝜆. Since

𝐷ℎ is not observed, there is no way to separately identify these

two effects.

It is easy to show, within the model, that the population

linear regression of 𝑌 on 𝐺 and 𝐻 recovers the wage dis-
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crimination effect,

𝜅,

and that the linear regression of 𝐻 on 𝐺 recovers

𝛾 + 𝜆,

the sum of the group preference effect and the human

capital discrimination effect; see Appendix 6.A for details. If

a further strong assumption is made that there is no group

preference effect, 𝛾 = 0, the linear regression of 𝑌 on 𝐺

recovers the total discrimination effect:

𝜅 + 𝜆(𝜅𝛿 + 𝜃).

Endogenous Sample Selection. There is an important issue

with our empirical example. We are only able to look at earn-

ings of people who are employed. Thus, we are conditioning

on

𝑌 > 𝑅,

where 𝑅 is the reservation wage. In other words, we are

conditioning on the outcome which may cause major selec-

tivity issues: People get employed, and end up in our data,

only if the offered wage is higher than some reservation

wage. This sample selection on the basis of the outcome

can cause major biases in the analysis. The potential for

large biases was recognized by James J. Heckman [9] in the

70s and led to the development of the celebrated Heckman

selection correction and related methods.

An alternate approach to applying a selection correction

in our example is to select a subset 𝑆 of people who are

employed with probability one (or very close to one). For

example, one could look at highly educated, unmarried

people. Within this subset, we would then have

𝑃(𝑌 > 𝑅 |𝑆) ≈ 1.

That is, the value of the wage offer, 𝑌, is approximately

unrelated to whether we observe individual wages for this

subset of people. This type of strategy has been employed

by Casey Mulligan and Yona Rubinstein [17]. Mulligan

and Rubinstein continue to find evidence in favor of the

existence of wage gaps in their analysis of a subsample

where selection effects are likely small. This finding then



6 Causal Inference via Linear Structural Equations 158

Figure 6.7: Early 20th century: The

work of Sewall and Philip Wright

made it possible for humans to be-

gin to "fly" in the space of causal

models. Another family of Wrights

made it possible for humans to be-

gin to fly in the air.

Figure 6.8: An early drawing for an

airplane appears very much like an

early drawing of a DAG.

Figure 6.9: DAG for Supply-

Demand Systems in P. Wright’s

work in 1928 [2].

suggests that the broad conclusion of the existence of wage

gaps is not driven entirely by sample selection issues.

In summary, we have the following observations:

▶ In general, wage gap regressions just estimate predictive

effects or associations.

▶ When we assume a SEM like the one above holds and

there are no endogenous sample selection effects, wage

gap regressions estimate wage discrimination effects.

▶ Unconditional wage gaps generally reflect a combination

of different types of discrimination and group preferences

and thus do not isolate solely the effects of discrimination.

6.5 Notes

This chapter presented an approach to causal inference that

goes back to the works of Sewall and Philip Wright [2], [3],

Tinbergen [4], Haavelmo [5], and others. This tradition lives in

modern structural casual models used in econometrics (espe-

cially, industrial organization) and in the artificial intelligence

community. The latter community, inspired by the foundational

work of J. Pearl [8], strongly adopted the use of causal diagrams,

known as directed acyclical graphs (DAGs). We continue explor-

ing this approach throughout the remainder of our treatment

on causal inference.

6.6 Notebooks

Notebook 6.6.1 (Collider Bias) Collider Bias R Notebook and

Collider Bias Python Notebook provide a simple simulated

example of collider bias, informing our discussion of condi-

tioning on Celebrity in our Structural Model of Hollywood.

6.7 Exercise

Exercise 6.7.1 (Collider Bias) Explain collider bias to a friend

in simple terms. Use no more than two paragraphs. Illustrate

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM2/r-colliderbias-hollywood.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM2/python-colliderbias-hollywood.ipynb
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your explanation using a simulation experiment.

Exercise 6.7.2 (Wage Gap Revisited) Empirical: Revisit the

group wage gap analysis from Chapter 4, focusing on college-

educated workers. Is there a structural/causal interpretation

for the estimated wage gap? Is there a group gap in educa-

tion achievement? Does this group gap in education have

a structural/causal interpretation? Some of these questions

are open ended and have no simple answers, but it is useful

to think about them. (If you have other data sets that might

illuminate discrimination in other settings, please use them

in place of the wage data set).

Exercise 6.7.3 (Mechanisms for Wage Gap) Free-style exercise:

The model for wage discrimination presented in our notes is

very stylized and subject to multiple criticisms. For example, it

does not deal with promotion and hiring decisions. There are

several interesting models of discrimination in hiring, college

admissions, and pay. For example, see "The Book of Why"[10]

and the Bickel et al. 1975 paper [18] for an analysis of Berkeley

undergraduate admissions decisions. Nina Roussile’s (2020)

[19] paper isolates the ask gap as the central mechanism for

the subsequent wage gap. Referring to one such analysis, draw

or write down a linear structural causal model that captures

the structural idea of the analysis and discuss identification

in the model.

https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf
https://ninaroussille.github.io/files/Roussille_askgap.pdf
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6.A Details of the Wage Discrimination

Analysis

We write out some of the structural equations corresponding to

our stylized DAG for discrimination (Figure 6.6):

𝑌 := 𝜅𝐷𝑤 + 𝜃𝐻 + 𝜖𝑌 , 𝜖𝑌 ⊥ 𝐷𝑤 , 𝐻, 𝐺

𝐷𝑤 := 𝐺 + 𝛿𝐻 + 𝜖𝐷𝑤 , 𝜖𝐷𝑤 ⊥ 𝐺, 𝐻

where the orthogonality relations are implied by the model.

Linear regression analysis would use observable variables only,

so we substitute the model for the unobserved 𝐷𝑤 in terms of

𝐺 and 𝐻 into the equation for 𝑌 to obtain

𝑌 = 𝜅𝐺 + (𝜅𝛿 + 𝜃)𝐻 +𝑈, 𝑈 := 𝜅𝜖𝐷𝑤 + 𝜖𝑌 ⊥ (𝐺, 𝐻).

The composite error term𝑈 is orthogonal to𝐺 and𝐻. Therefore,

regression of 𝑌 on 𝐺 and 𝐻 learns 𝜅 and (𝜅𝛿 + 𝜃), with our

main target being 𝜅. “This is elementary, my dear Wat-

son,” said Sherlock Holmes after

seeing this.

We can also see that by partialling out𝐻,

�̃� = 𝜅�̃� +𝑈, 𝑈 ⊥ �̃�.

Thus, 𝜅 is retrievable only if there is non-zero variation in �̃�

after taking out the linear effect of 𝐻.

Now suppose we want to study discrimination effects in occu-

pational choices, captured by 𝐻 in our model. We write out the

relevant structural equations:

𝐻 := 𝛾𝐺 + 𝜆𝐷ℎ + 𝜖𝐻 , 𝜖𝐻 ⊥ (𝐺, 𝐷ℎ),
𝐷ℎ := 𝐺 + 𝜖𝐷ℎ

, 𝜖𝐷ℎ
⊥ 𝐺.

Recall that 𝛾 is the group preference effect and 𝜆 is the discrim-

ination effect. Since 𝐷ℎ is not directly observed, we substitute it

out to arrive at

𝐻 = (𝛾 + 𝜆)𝐺 +𝑉 ; 𝑉 := 𝛾𝜖𝐷ℎ
+ 𝜖𝐻 ⊥ 𝐺.

Therefore, 𝛾 + 𝜆 is the projection coefficient in the projection of

𝐻 on 𝐺. Hence, we can identify 𝛾 + 𝜆, but we can’t identify 𝛾
and 𝜆 separately.

Going further, suppose that the group preference effect is zero,

so 𝛾 = 0. Then, the previous argument would identify 𝜆 and

we could identify the total discrimination effect arising from

two different channels:

𝜅 + 𝜆(𝜅𝛿 + 𝜃).
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from the regression of 𝑌 on 𝐺.

We can assert that the unconditional difference in wages mea-

sures discrimination only if the group preference effect in

determining 𝐻 is zero (𝛾 = 0). Of course, most economists

would probably not agree with the assumption that 𝛾 = 0.

Empirically, there are large differences in group composition

among different professions. These differences likely reflect

both discrimination and genuine preferences.
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