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"compare apples and/to/with apples: to compare

things that are very similar."

– Merriam Webster Dictionary [1].

Here we discuss how average causal effects may be identified

using regression when treatment is not randomly assigned

but instead depends on observed covariates. We discuss the

conditional or adjustment method, which relies on comparing

the average difference between expected outcomes for treated

and untreated units that are comparable (formally, identical)

in terms of their characteristics 𝑋. If treatment is as good

as randomly assigned conditional on 𝑋, then this approach

recovers average causal or treatment effects. This key condition

is commonly referred to as conditional ignorability, conditional

exogeneity, or unconfoundedness.
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1: We often refer to these common

causes as "omitted variables" that

give rise to "omitted variable bias."

2: It remains a fundamental empir-

ical problem to confirm this con-

jecture or disprove this conjecture.

The causal channel through which

chocolate (and other flavonoids)

may affect Nobel production is by

documented improvement in the

cognitive function.

5.1 Introduction

In a cross-country analysis, higher chocolate consumption pre-

dicts a higher number of Nobel laureates per capita.

Figure 5.1: Source: Franz H.

Messerli, "Chocolate Consumption,

Cognitive Function, and Nobel Lau-

reates," New England Journal of

Medicine. 2012

Is this a reflection of a true causal effect and therefore an

actionable insight? If it were, countries could generate more

Nobel laureates per capita by making chocolate abundant to

everyone. (This wouldn’t be a bad thing.) Is this perhaps what

Switzerland did? Switzerland has the highest number of Nobel

laureates per capita.

Or is there a common cause
1

that creates non-causal association?

Perhaps wealthy countries invest more in science and higher

wealth causes people to consume luxury goods like chocolate.

See for instance plots (D) and (E) in Figure 5.3. Comparative

analysis, where we compare nations with identical or similar

wealth, would probably reveal that the correlation is not causal.
2

Probably we should be comparing Switzerland to similar

countries in terms of wealth – the "apples-to-apples" comparison,

so to speak. This type of analysis is very common in causal

Chocolate

Country’s Wealth

Nobel

?

Figure 5.2: A Contrived Causal

Path Diagram for the Effect of Coun-

try’s Wealth on Chocolate Con-

sumption and Nobel Prize Produc-

tion per capita.
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inference and is implemented via a set of tools introduced in

this chapter.

Figure 5.3: Source: J Nutr, Vol-

ume 143, Issue 6, June 2013,

Pages 931–933, "Does Chocolate

Consumption Really Boost Nobel

Award Chances? The Peril of Over-

Interpreting Correlations in Health

Studies," ©2013 American Society

for Nutrition

In what follows, we work within Rubin’s [2] potential outcomes

framework, as introduced in Chapter ??. The idea is that if we

can think of observed treatment 𝐷 as generated randomly –

independently of potential outcomes – conditional on some

pre-treatment variables 𝑋 , then we can learn the average causal

(treatment) effects by regression

of 𝑌 on 𝐷 and 𝑋,

or, as is often said, by "adjusting" or "controlling" for 𝑋.

Notation

Recall that we denote the independence of two random variables

(these can include random vectors)𝑈 and 𝑉 as

𝑈 ⊥⊥ 𝑉.

Independence, conditional on a third variable 𝑋, is denoted

by

𝑈 ⊥⊥ 𝑉 | 𝑋.

5.2 Potential Outcomes and Ignorability

Recall that we use 𝑌(𝑑) to denote potential outcome in the

treatment state 𝑑, where we consider only the case 𝑑 ∈ {0, 1}
for simplicity. We also recall our example of smoking from

the previous chapter. Suppose we want to study the impact of
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3: The assumption is fundamen-

tally untestable and is an assump-

tion in the purest sense. Given

assumed domain knowledge en-

coded in causal DAGs, we study

a systematic way of finding 𝑋 that

satisfy this assumption in subse-

quent chapters.

4: You may wonder why the term

"ignorability" is used. The distri-

bution of 𝑌(𝑑) depends only on 𝑋

and not on𝐷, so the latter is "ignor-

able." Note that the conventional

name used in econometrics for the

ignorability assumption is the con-
ditional exogeneity or conditional in-
dependence assumption.

smoking marĳuana on life longevity. Suppose that smoking

marĳuana has no causal/treatment effect on life longevity:

𝑌 = 𝑌(0) = 𝑌(1), so that 𝛿 = E[𝑌(1)] − E[𝑌(0)] = 0.

However, the observed smoking behavior, 𝐷, results not from

an experimental study, but from observational data in which an

individual’s smoking decisions are driven by other behavioral

choices 𝑋 (drinking alcohol for example) which cause shorter

life longevity. In this case, the predictive effect recovered by

regression without adjusting for 𝑋 does not match the average

causal effect

E[𝑌 | 𝐷 = 1] − E[𝑌 | 𝐷 = 0] < 0 = 𝛿,

because higher 𝐷 predicts higher 𝑋, which predicts lower 𝑌.

This difference between the predictive effect and average causal

effect is the result of confounding or selection bias.

In this example, conditioning on 𝑋 can remove the selection

bias (see Figure 5.4)

E[E[𝑌 | 𝐷 = 1, 𝑋] − E[𝑌 | 𝐷 = 0, 𝑋]] = 𝛿,

provided that conditional on 𝑋 variation in 𝐷 is independent

of the potential health outcomes.

The following provides a formal assumption under which we

can eliminate the confounding bias by controlling for 𝑋.
3

Assumption 5.2.1 (Conditional Ignorability and Consistency)

Ignorability: Suppose that treatment status 𝐷 is independent of
potential outcomes 𝑌(𝑑) conditional on a set of covariates 𝑋: For
each 𝑑,

𝐷 ⊥⊥ 𝑌(𝑑) | 𝑋.

Consistency: Suppose that 𝑌 is generated as 𝑌 := 𝑌(𝐷).

Identification by Conditioning

The ignorability assumption
4

says that variation in treatment

assignment 𝐷 is as good as random conditional on 𝑋. This

assumption means that if we look at units with the same value

of the covariates, e.g. units with𝑋 = 𝑥, then treatment variation

among these observationally identical units, 𝐷 | 𝑋 = 𝑥, is

indeed produced as if by a formal randomized control trial.
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Figure 5.4: Pictorial representation

of how selection on 𝑋 can lead

to biased observed outcomes be-

tween treated and control popula-

tions, while conditioning on 𝑋 re-

moves the selection bias. In this ex-

ample, the potential outcomes𝑌(0)
and 𝑌(1) have identical distribu-

tions shown in the far left and right

of the figure. We also have a binary

covariate 𝑋 that is related to treat-

ment probability in the sense that

P(𝐷 = 1|𝑋 = 1) > P(𝐷 = 1|𝑋 = 0)
and P(𝐷 = 0|𝑋 = 1) < P(𝐷 =

0|𝑋 = 0) which leads to selection

bias when we do not condition on

𝑋. This bias is illustrated by the

difference in the distribution of (ob-

served) 𝑌 given 𝐷 = 0 and 𝐷 = 1

shown in the black curves in the

middle of the figure. The bottom

panel then shows that selection bias

is removed by conditioning on 𝑋
as the distribution of potential out-

comes given 𝑋 (blue and orange

curves under 𝑌(0)|𝑋 and 𝑌(1)|𝑋)

equals the distribution of observed

outcomes given 𝐷 and 𝑋 (blue and

orange curves under 𝑌 |𝐷 = 0, 𝑋
and 𝑌 |𝐷 = 1, 𝑋).

Therefore, we can learn about the causal effect of 𝐷 by com-

paring outcomes across treated and control units who have

identical characteristics 𝑋 = 𝑥 under the conditional ignora-

bility assumption. The idea of comparing observations who

have identical characteristics is the essence of the so-called

conditioning or adjustment strategy to learning causal effects. As

conditioning approaches produce a different contrast for every

potential value of 𝑋 , we may also wish to average the contrasts

at different values of 𝑋 over the distribution of characteristics

to produce a summary measure of the causal effects.

The conditional probability of receiving treatment, the propensity
score, plays an important role in this approach.

Assumption 5.2.2 (Overlap/Full Support) The probability of
receiving treatment given 𝑋, the propensity score

𝑝(𝑋) := P(𝐷 = 1|𝑋),

is non-degenerate:

P(0 < 𝑝(𝑋) < 1) = 1.
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The overlap assumption requires that there is proper random-

ization or variation in 𝐷 at each value 𝑥 in the support of 𝑋.

Without this condition, there are values 𝑥 in the support of 𝑋

where we cannot construct a contrast between treatment and

control units. We cannot learn the conditional average treatment

effect at these values of 𝑋 and thus are also unable to learn the

unconditional average effect of the treatment.

Remark 5.2.1 Assumption 5.2.2 is also often called the full
support condition because it requires

support(D,X) = {0, 1} × support(𝑋).

The following is the most important theoretical result that states

that we can recover expectations of potential outcomes from

regressions.

Theorem 5.2.1 (Conditioning on 𝑋 Removes Selection Bias)

Under Conditional Ignorability and Overlap, the conditional expec-
tation function of observed outcome 𝑌 given 𝐷 = 𝑑 and 𝑋 recovers
the conditional expectation of the potential outcome 𝑌(𝑑) given 𝑋:

E[𝑌 | 𝐷 = 𝑑, 𝑋] = E[𝑌(𝑑) | 𝐷 = 𝑑, 𝑋] = E[𝑌(𝑑) | 𝑋].

To prove Theorem 5.2.1, note that the overlap assumption makes

it possible to condition on the events {𝐷 = 0, 𝑋} and {𝐷 = 1, 𝑋}
at any value in the support of 𝑋 and that the second equality

holds by ignorability.

Hence, the Conditional Average Predictive Effect (CAPE),

𝜋(𝑋) = E[𝑌 | 𝐷 = 1, 𝑋] − E[𝑌 | 𝐷 = 0, 𝑋],

is equal to the Conditional Average Treatment Effect

(CATE),

𝛿(𝑋) = E[𝑌(1) | 𝑋] − E[𝑌(0) | 𝑋].

Thus, the APE and ATE also agree:

𝛿 = E[𝛿(𝑋)] = E[𝜋(𝑋)] = 𝜋.
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5: Note that what we present is just

one of many casual diagrams that

are compatible with the conditional

ignorability condition. There are

others, as will become apparent in

subsequent chapters.

Conditional Ignorability via Causal Diagrams

It is possible to illustrate the key ignorability assumption, As-

sumption 5.2.1, graphically as follows:
5

𝐷 𝑑 𝑌(𝑑)

𝑋
Figure 5.5: A Causal Diagram for

the Conditional Ignorability Re-

search Design

In this graph, we show the potential outcome𝑌(𝑑) as a node and

the potential treatment status 𝑑 as another node. The latter node

is deterministic. There is an arrow from 𝑑 to 𝑌(𝑑) indicating

the dependency. The pre-treatment covariates 𝑋 affect both the

realized treatment variable 𝐷 and the potential outcomes 𝑌(𝑑),
as shown by the arrow from 𝑋 to 𝐷 and from 𝑋 to 𝑌(𝑑). The

assigned treatment variable 𝐷 is independent of the node 𝑌(𝑑),
conditional on 𝑋 . Independence can be derived from the graph

by observing the absence of any path between the 𝐷 and 𝑌(𝑑)
nodes other than the path through the variable 𝑋 upon which

we’ve conditioned. Note that Assumption 5.2.2, the overlap

condition, is not illustrated in the graph.

The potential outcome process 𝑑 ↦→ 𝑌(𝑑) and treatment assign-

ment jointly determine the realized outcome variable 𝑌 via

the assignment 𝑌 := 𝑌(𝐷). This generates the following causal

diagram. This graph says that 𝑋 is generated first. 𝐷 is then

𝐷

𝑌

𝑋
Figure 5.6: A Causal Diagram with

Conditional Ignorability

generated, with the distribution of 𝐷 depending on 𝑋. Finally,

𝑌 is generated, with its distribution depending on both 𝐷 and

𝑋. Here, after conditioning on 𝑋, the statistical dependence

(association) between 𝐷 and 𝑌 only reflects the causal channel,

𝐷 → 𝑌 allowing us to uncover the ATE, for example.
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6: This model is still linear and re-

sults for linear models carry over

to this case as well.

Connections to Linear Regression

The tools from Chapter 1 and Chapter 4 can be used to perform

statistical inference on ATEs. We briefly discuss how (high-

dimensional) regression can be used to retrieve causal estimates

when conditional ignorability holds in this section.

The simplest instance of the problem is when the conditional

expectation function of 𝑌 given 𝐷 and 𝑋 is linear,

E[𝑌 | 𝐷, 𝑋] = 𝛼𝐷 + 𝛽′𝑊,

which gives a model

𝑌 = 𝛼𝐷 + 𝛽′𝑊 + 𝜖, E[𝜖 | 𝐷, 𝑋] = 0.

Here it is understood that 𝑊 may include 𝑋 as well as pre-

specified nonlinear transformations of 𝑋.

In this model, 𝛼 identifies 𝛿

𝛿 = 𝛼

under the linearity assumption and ignorability, and our in-

ference tools for 𝛼 automatically carry over to 𝛿. Note that the

linearity assumption and ignorability assumptions imply that

treatment effects are homogeneous; that is, 𝛿(𝑥) = 𝛿 for all 𝑥 in

the support of 𝑋.

Of course, the assumption of linearity and homogeneous treat-

ment effects is restrictive. A simple way to relax this is to

consider interactions. One version of this approach takes all

interactions between𝑊 and 𝐷 and assumes

E[𝑌 | 𝐷, 𝑋] = 𝛼1𝐷 + 𝛼′
2
𝑊𝐷 + 𝛽1 + 𝛽′

2
𝑊,

where we also maintain that we are working with centered

covariates: E𝑊 = 0.
6

We then recover the ATE as

𝛿 = 𝛼1

and CATE as

𝛿(𝑋) = 𝛼1 + 𝛼′
2
𝑊.

We can use partialling out methods, such as OLS in the

low-dimensional case and Double Lasso (and variants) in
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the high-dimensional case, to perform inference on 𝛼1 and

components of 𝛼2. We can use these same methods to per-

form inference over 𝛽1 and components of 𝛽2, though these

parameters will often not be of interest.

Note, we used this approach in the heterogeneous wage gap

example in Chapter 1. The discussion of whether the wage gap

analysis has a causal interpretation is given in the next causal

inference chapter, Chapter 6.

As demonstrated in Theorem 5.2.1, the ultimate targets are

the conditional expectation functions E[𝑌(𝑑)|𝑋] if our goal is

to learn average causal effects under ignorability. This being

our target makes the relevance of considering transformations

𝑊 = 𝑇(𝑋) of 𝑋 important as we would like to have the linear

model provide a good approximation to these conditional

expectation functions. See the discussion in "From Best Linear

Predictor to Best Predictor" in Chapter 1. If the linear model

is misspecified in the sense that it does not approximate the

conditional expectation functions well, the estimated causal

effects - e.g. 𝛼1 in the interactive model - do not necessarily

have any causal interpretation. This potential failure is a major

reason we consider more flexible, modern machine learning

methods.

What about fully nonlinear strategies? We will explore them

in Chapter 9.

5.3 Identification Using Propensity Scores

The identification by conditioning approach requires being able

to accurately model the "outcome process," i.e. the conditional

expectation function E[𝑌 | 𝐷, 𝑋]. This conditional expectation

function might correspond to a complicated real world process

that is hard to model or approximate.

When the outcome process is hard to model, we might have a

much better handle on the "treatment selection process," i.e. the

propensity score:

𝑝(𝑋) = P(𝐷 = 1 | 𝑋).

An alternative approach, known as the Horvitz-Thompson

method [3], uses propensity score reweighting to recover aver-
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7: An interesting example where

the propensity score is not known

but can be well-approximated is

the examination in [4] of the causal

effect of attendance at a particular

school or group of schools relative

to one or more alternative schools

(e.g., "elite" vs. "non-elite" schools)

in settings where matching algo-

rithms are used to assign students

to schools. In this example, we can

think of these student assignment

mechanisms as 𝑝(𝑋).

ages of potential outcomes. Using the propensity score rather

than identification by conditioning on 𝑋 is a useful empirical

strategy when 𝑋 is high-dimensional and 𝑝(𝑋) is available

or can be approximated accurately.
7

An example of a setting

where the propensity score is known is a stratified RCT, which

is an experiment where treatment is assigned at random with

probability 𝑝(𝑋) to individuals with different observed covari-

ates 𝑋. In this case, the treatment assignment probability 𝑝(𝑋)
is exactly the propensity score.

Theorem 5.3.1 (Horvitz-Thompson: Propensity Score Reweight-

ing Removes Bias) Under Conditional Ignorability and Overlap,
the conditional expectation of an appropriately reweighted observed
outcome 𝑌, given 𝑋, identifies the conditional average of potential
outcome 𝑌(𝑑) given 𝑋:

E

[
𝑌

1(𝐷 = 𝑑)
P(𝐷 = 𝑑 |𝑋) | 𝑋

]
= E[𝑌(𝑑) | 𝑋]

Then, averaging over 𝑋 identifies the average potential outcome:

E

[
𝑌

1(𝐷 = 𝑑)
P(𝐷 = 𝑑 |𝑋)

]
= E[𝑌(𝑑)]

To prove this result, note

E

[
𝑌

1(𝐷 = 𝑑)
P(𝐷 = 𝑑 |𝑋) | 𝑋

]
=

E[𝑌1(𝐷 = 𝑑) | 𝑋]
P(𝐷 = 𝑑 |𝑋)

= E[𝑌(𝑑) | 𝑋]E[1(𝐷 = 𝑑) | 𝑋]
P(𝐷 = 𝑑 |𝑋)

= E[𝑌(𝑑) | 𝑋],

where we used conditional ignorability in the second equality.

As a consequence, we can identify average treatment effects

by simple averaging of transformed outcomes:

𝛿 = E[𝑌𝐻], 𝐻 =
1(𝐷 = 1)

P(𝐷 = 1|𝑋) −
1(𝐷 = 0)

P(𝐷 = 0|𝑋) ,

where 𝐻 is called the Horvitz-Thompson transform. Simi-

larly, we can identify conditional average treatment effects

as a conditional average of transformed outcomes:

𝛿(𝑋) = E[𝑌𝐻 | 𝑋].
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Note that propensity score reweighting reduces to the differ-

ence of means in the control and treatment groups when the

propensity score is constant.

Stratified RCTs

In the case where the propensity score 𝑝(𝑋) is known, we are

essentially back to a classical RCT.

Definition 5.3.1 (Generalized/Stratified RCT) If under As-
sumption 5.2.1, the propensity score 𝑝(𝑋) is known, the setting is
called a generalized or stratified RCT.

Remark 5.3.1 Propensity score reweighting is generally not

the most efficient approach to estimating treatment effects

from a statistical point of view because it ignores any de-

pendence between the outcomes and controls, 𝑋, that is not

captured by the propensity score. By exploiting dependence

between the outcomes and 𝑋 not captured by the propensity

score, more efficient estimation of treatment can occur as

using this dependence "de-noises" the outcome. Moreover,

estimation based on only propensity score reweighting fails

under imbalances that might arise due to imperfect data col-

lection. Later, we will use both regression and reweighting as

part of "double machine learning" to operationalize efficient

statistical inference on treatment effects in fully nonlinear

(nonparametric) models.

Covariate Balance Checks

Given a propensity score 𝑝(𝑋), we can check if the RCT is valid

(randomization is successful) by performing a covariate balance
check.. Specifically, conditional ignorability implies that

E[𝐻 | 𝑋] = 0.

Thus, if covariates predict 𝐻, we can conclude that conditional

ignorability does not hold. Heuristically, covariates predicting

𝐻 means that covariates are imbalanced in the sense that, af-

ter reweighting by 𝑋 dependent treatment probability, there

are systematic differences in 𝑋 across treatment and control

observations which can be exploited to predict treatment as-

signment.
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In a low-dimensional linear model framework, a covariate

balance check can be done by regressing𝐻 on𝑊 , a dictionary of

transformations of 𝑋 , and testing if𝑊 predicts𝐻.𝑊 predicting

𝐻 suggests that the RCTs randomization protocol did not go as

planned.

Connections to Linear Regression

Note that by the Horvitz-Thompson transform characterization

of the CATE, 𝛿(𝑋) = E[𝑌𝐻 | 𝑋], we can view the conditional

average treatment effect as the solution to a prediction problem

of predicting the transformed outcome 𝑌𝐻 from the regressors

𝑋.

A useful strategy is to consider (potentially high-dimensional)

linear regression models where 𝐻𝑌 is the dependent variable;

see, e.g., [5]. Note that if we assume that E[𝑌 | 𝐷, 𝑋] = 𝛼1𝐷 +
𝛼′

2
𝑊𝐷 + 𝛽1 + 𝛽′

2
𝑊 , where𝑊 is a dictionary of transformations

of 𝑋, then we have

E[𝑌𝐻 | 𝑋] = 𝛼1 + 𝛼′
2
𝑊.

Thus, we can simply run a regression of 𝑌𝐻 on (1,𝑊 ′)′. In this

regression model, we recover the ATE as

𝛿 = 𝛼1

and CATE as

𝛿(𝑋) = 𝛼1 + 𝛼′
2
𝑊.

We can use partialling out methods, such as Double Lasso,

to perform inference on 𝛼1 and components of 𝛼2. We also

discuss estimating CATE using more general machine learning

methods in Chapter 14 and Chapter 15.

5.4 Conditioning on Propensity Scores
★

The fact that conditioning on the right set of controls removes se-

lection bias has long been recognized by researchers employing

regression methods. Rosenbaum and Rubin [6] made the much

more subtle point that conditioning on only the propensity

score

𝑝(𝑋) = P(𝐷 = 1 | 𝑋)

also suffices to remove the selection bias.
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Theorem 5.4.1 (Rosenbaum and Rubin: Conditioning on the

Propensity Score Removes Selection Bias) Under Ignorability
and Overlap, 𝐷 is generated independently of 𝑌(𝑑) for each 𝑑,
conditional on the propensity score 𝑝(𝑋): For each 𝑑,

𝐷 ⊥⊥ 𝑌(𝑑) | 𝑝(𝑋).

In other words, conditional on 𝑝(𝑋) = 𝑝, variation in 𝐷 is as

good as randomly assigned. Hence, whenever it suffices to use

𝑋 for identification by conditioning, it also suffices to use 𝑝(𝑋).
This fact makes 𝑝(𝑋) a "minimal sufficient" statistic, condition-

ing on which removes selection bias under ignorability.

In scenarios with a known propensity score, we can simply

use 𝑝(𝑋) as a control in place of the high-dimensional set of

characteristics, 𝑋, and thus bypass a potentially complicated

high-dimensional estimation problem. In other words, we can

identify the conditional average potential outcome as

E[𝑌(𝑑) | 𝑝(𝑋)] = E[𝑌 | 𝐷 = 𝑑, 𝑝(𝑋)].

Thus, it suffices to learn the CEF E[𝑌 | 𝐷, 𝑝(𝑋)]. We learn good

approximations of these CEFs by incorporating polynomials or

other transformations of 𝑝(𝑋) to make things more flexible and

running linear regression methods. Finally, we can also employ

nonlinear machine learning methods introduced in Chapter 8

to overcome the limitations of linear models.

After controlling for 𝑝(𝑋), we can also consider the use of high-

dimensional methods to include other transformations𝑊 of the

raw variables 𝑋 in order to improve precision, estimating the

more flexible CEF E[𝑌 | 𝐷, 𝑝(𝑋),𝑊]. It is especially advisable to

include transformations𝑊 that fail the covariate balance checks

discussed in Section 5.3. Including𝑊 can reduce the selection

bias (and, hopefully, set it equal to zero). In the reemployment

experiment, for example, we observed that balance did not

seem satisfied across age groups. Hence, further controlling for

age makes sense and results in modest changes to estimates

of the treatment effect. Of course, there is no guarantee that

controlling for observed covariates can overcome selection bias

in compromised RCTs in general because unobserved covariates

may be driving the bias.

Remark 5.4.1 ("Clever Covariate") Finally, we note that the
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simple OLS regression of𝑌 on the single constructed regressor

𝜙(𝐷, 𝑋) :=
1(𝐷 = 1)

P(𝐷 = 1|𝑋) −
1(𝐷 = 0)

P(𝐷 = 0|𝑋) = 𝐻

can be used to estimate the ATE. Specifically, for 𝛽 the coeffi-

cient in the model 𝑌 = 𝛽𝐻 + 𝜀 with 𝜀 ⊥ 𝐻, we have that the

ATE is equal to E[𝛽(𝜙(1, 𝑋)−𝜙(0, 𝑋))]. This result holds even

though the CEF function is not given by 𝛽𝐻; see Section 5.B.

As such, incorporating the technical regressor 𝐻 in a linear

regression model (without penalization if high-dimensional

estimation tools are used) can be a good idea. This approach is

referred to as the "clever covariate" approach in the literature

[7, 8].

5.5 Average Treatment Effect for Groups

and on the Treated

In addition to unconditional average treatment effects (ATE)

or average treatment effects at specific values of the covariates

𝑋 = 𝑥, we may be interested in average effects within specific

subpopulations.

A leading example of an interesting subpopulation treatment

effect is a group ATE (GATE):

𝛿𝐺 = E[𝑌(1) − 𝑌(0)|𝐺 = 1]

where 𝐺 is a group indicator defined in terms of 𝑋’s. For

example, we might be interested in the effects of a training

program among younger people, say between 18 and 30 years

old (𝐺 = 1(18 ≤ age ≤ 30)); among people older than 30 years

old (so 𝐺 = 1(30 < age)); and differences between these two

groups.

We can immediately obtain the GATE using the identification

results above and the law of iterated expectations:

E[𝑌(1) − 𝑌(0)|𝐺 = 1]
= E[E[𝑌 |𝐷 = 1, 𝑋] − E[𝑌 |𝐷 = 0, 𝑋]|𝐺 = 1]
= E[𝐻𝑌 |𝐺 = 1].

That is, we can identify GATEs either by taking the difference in

regression functions or applying propensity score reweighting

of outcomes and then averaging over group 𝐺.
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8: Rather than ATET, some use the

abbreviation AToT or ATT.

We next consider treatment effects for the subpopulation of

treated units, the average treatment effect on the treated (ATET):
8

𝛿1 = E[𝑌(1) − 𝑌(0) | 𝐷 = 1].

For example, consider training completion as a treatment, 𝐷,

and𝑋 a vector of pre-treatment variables such that unconfound-

edness holds. Consider the question:

▶ On average, how much more do trainees earn after going

through the training program than they would have

earned had they not gone through the program?

Note that this question is a counterfactual question as it requires

us to compare outcomes for trainees in the treated state, where

they receive training, and the unobserved control state, where

they did not receive training. The ATET, 𝛿1, is the parameter

that answers such questions about counterfactuals. The ATET

is identified by

E[E[𝑌 |𝐷 = 1, 𝑋] − E[𝑌 |𝐷 = 0, 𝑋] | 𝐷 = 1]

similarly to what we had above. It is also possible to bypass the

use of E[𝑌 |𝐷 = 1, 𝑋] in this case; see Appendix 5.C for more

details.

5.6 Exercises

Exercise 5.6.1 (Conditioning) Use one or two paragraphs

to explain conditioning and its use in learning treatment

effects/causal effects in observational data and randomized

trials where treatment probability depends on pre-treatment

variables. This discussion should be non-technical as if you

were writing an explanation for a smart friend with relatively

little exposure to causal modeling.

Exercise 5.6.2 (Propensity Score Reweighting) Use one or

two paragraphs to explain the propensity score reweighting

approach for identification of average treatment effects. This

discussion should be non-technical as if you were writing an

explanation for a smart friend with relatively little exposure

to causal modeling.

Exercise 5.6.3 (GATE and ATET) Use one or two paragraphs

to explain why group ATE and the ATE on the treated may be
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of interest in empirical work. This discussion should be non-

technical as if you were writing an explanation for a smart

friend with relatively little exposure to causal modeling.

5.A Rosenbaum-Rubin’s Result

Recall the propensity score is

𝑝(𝑋) := P(𝐷 = 1|𝑋),

which is the probability of receiving treatment given𝑋 . A simple

useful intermediate property is the balancing property of the

propensity score which states that treatment is independent of

𝑋 conditional on the propensity score:

𝐷 ⊥⊥ 𝑋 | 𝑝(𝑋) ⇔ P(𝐷 = 1|𝑋, 𝑝(𝑋)) = P(𝐷 = 1|𝑝(𝑋)).

This result follows simply from (i) P(𝐷 = 1|𝑋, 𝑝(𝑋)) = P(𝐷 =

1|𝑋) = 𝑝(𝑋) and (ii) P(𝐷 = 1|𝑝(𝑋)) = E[𝐷 = 1|𝑝(𝑋)] =

E[E[𝐷 |𝑋, 𝑝(𝑋)]|𝑝(𝑋)] = E[𝑝(𝑋)|𝑝(𝑋)] = 𝑝(𝑋). This property

underlies covariate balance checks.

We now turn to the theorem of Rosenbaum and Rubin. By

Theorem 5.3.1 and the law of iterated expectations, we have

that for any function of the form 𝑔(𝑦) = 1(𝑦 ≤ 𝑡), 𝑡 ∈ ℝ:

E [𝑔(𝑌(1)) | 𝑝(𝑋)] = E[E[𝑔(𝑌(1))|𝑋, 𝑝(𝑋)]|𝑝(𝑋)]
= E[E[𝑔(𝑌(1))|𝑋]|𝑝(𝑋)]

= E

[
𝑔(𝑌)1(𝐷 = 1)

𝑝(𝑋) | 𝑝(𝑋)
]

= E

[
𝑔(𝑌)1(𝐷 = 1)

𝑝(𝑋) | 𝐷 = 1, 𝑝(𝑋)
]
𝑃(𝐷 = 1|𝑝(𝑋))

+ E

[
𝑔(𝑌)1(𝐷 = 1)

𝑝(𝑋) | 𝐷 = 0, 𝑝(𝑋)
]
𝑃(𝐷 = 0|𝑝(𝑋))

= E[𝑔(𝑌) | 𝐷 = 1, 𝑝(𝑋)]𝑃(𝐷 = 1 | 𝑝(𝑋))
𝑝(𝑋)

= E[𝑔(𝑌) | 𝐷 = 1, 𝑝(𝑋)]
= E[𝑔(𝑌(1)) | 𝐷 = 1, 𝑝(𝑋)]

where we use 𝑃(𝐷 = 1 | 𝑝(𝑋)) = 𝑝(𝑋). We can similarly argue

for the case of 𝑑 = 0. Thus, the conditional distribution of

𝑌(1) does not depend on 𝐷, once we condition on 𝑝(𝑋), which

verifies Theorem 5.4.1.
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9: Verify this as a reading exercise.

5.B Clever Covariate Regression

Here we show that if we care only about estimating the ATE,

then it suffices to learn the BLP of the outcome 𝑌 using the

single covariate

𝜙(𝐷, 𝑋) := 𝐻 =
1(𝐷 = 1)
𝑝(𝑋) −

1(𝐷 = 0)
1 − 𝑝(𝑋) .

We can then use this BLP model as a proxy for the CEF

E[𝑌 | 𝐷, 𝑝(𝑋)]. Specifically, we learn a decomposition 𝑌 =

𝛽𝜙(𝐷, 𝑋) + 𝜖, 𝜖 ⊥ 𝜙(𝐷, 𝑋) by running OLS of 𝑌 on 𝜙(𝐷, 𝑋)
and then use E[𝛽(𝜙(1, 𝑋)−𝜙(0, 𝑋))] as the ATE. This approach,

referred to in the literature as the "clever covariate" approach,

was first proposed in [7] and further developed in [8].

Note that the random variable 𝐻 satisfies

E[ 𝑓 (𝐷, 𝑋)𝐻 | 𝑋] = 𝑓 (1, 𝑋) − 𝑓 (0, 𝑋)

for any function 𝑓 (𝐷, 𝑋).9 Then, by Theorem 5.3.1 and orthog-

onality of 𝜖 in the BLP decomposition:

E[𝑌(1) − 𝑌(0)] = E[𝑌𝐻] = E[𝛽𝜙(𝐷, 𝑋)𝐻]
= E

[
𝛽(𝜙(1, 𝑋) − 𝜙(0, 𝑋))

]
.

Note that even though this approach allows us to identify the

ATE, it does uncover the CATE E[𝑌(1) − 𝑌(0) | 𝑋]. The reason

for the failure in learning the CATE is that the residual 𝜖 does

not necessarily satisfy conditional orthogonality; i.e. we do not

have E[(𝑌 − 𝛽𝜙(𝐷, 𝑋))𝐻 | 𝑋] = 0.

5.C Details of ATET

In observational studies, the ATET is identified under weaker

conditions than the ATE because

E[𝑌(1) | 𝐷 = 1] = E[𝑌 | 𝐷 = 1],

so we only need to identify E[𝑌(0) | 𝐷 = 1]. We can state the

weaker version of the ignorability and overlap conditions as

follows:

Assumption 5.C.1 (Ignorability and Overlap for Treated) (a)
Ignorability. Suppose that the treatment status 𝐷 is independent of
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𝑌(0) conditional on a set of covariates 𝑋, that is

𝐷 ⊥⊥ 𝑌(0) | 𝑋.

(b) Weak Overlap. Suppose that the propensity score satisfies:

P(𝑝(𝑋) < 1) = 1.

Theorem 5.C.1 (Identification of ATET) Under Assumption
5.C.1,

𝛿1 = E[𝑌 | 𝐷 = 1] − E[E[𝑌 | 𝑋, 𝐷 = 0] | 𝐷 = 1].

Theorem 5.C.1 follows because, by iterated expectations and

ignorability,

E[𝑌(0) | 𝐷 = 1] = E[E[𝑌(0) | 𝐷 = 1, 𝑋] | 𝐷 = 1]
= E[E[𝑌(0) | 𝐷 = 0, 𝑋] | 𝐷 = 1]
= E[E[𝑌 | 𝐷 = 0, 𝑋] | 𝐷 = 1],

where the outer expectation is well-defined because the support

of 𝑋 conditional on 𝐷 = 1 is a subset of the support of 𝑋

conditional on 𝐷 = 0 by the overlap condition.

The Horvitz-Thompson method can be also used to recover

averages of potential outcomes for the treated. Indeed,

E[𝐷𝑌]
E[𝐷] =

E[𝐷𝑌(1)]
E[𝐷] = E[𝑌(1) | 𝐷 = 1]
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and

E

[
(1−𝐷)

1−𝑝(𝑋)𝑝(𝑋)𝑌
]

E[𝐷] =

E

[
𝑝(𝑋)

1−𝑝(𝑋)E[(1 − 𝐷)𝑌 | 𝑋]
]

E[𝐷]

=

E

[
𝑝(𝑋)

1−𝑝(𝑋)E[(1 − 𝐷)𝑌(0) | 𝑋]
]

E[𝐷]

=

E

[
𝑝(𝑋)

1−𝑝(𝑋)E[1 − 𝐷 |𝑋]E[𝑌(0) | 𝑋]
]

E[𝐷]

=
E[𝑝(𝑋)E[𝑌(0) | 𝑋]]

E[𝐷]

=
E[E[𝐷 | 𝑋]E[𝑌(0) | 𝑋]]

E[𝐷]

=
E[E[𝐷𝑌(0) | 𝑋]]

E[𝐷]

=
E[𝐷𝑌(0)]

E[𝐷] = E[𝑌(0) | 𝐷 = 1]

where in the second to last step we used that 𝐷 ⊥⊥ 𝑌(0) | 𝑋,

implies E[𝐷𝑌(0) | 𝑋] = E[𝐷 |𝑋]E[𝑌(0) | 𝑋]. Hence, we obtain

the following result:

Theorem 5.C.2 (Propensity Score Reweighting for the Treated)

Under Assumption 5.C.1,

E[𝑌�̄�] = 𝛿1, �̄� = 𝐻𝑝(𝑋)/E[𝐷].
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