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"The partial trend regression method can never, in-

deed, achieve anything which the individual trend

method cannot, because the two methods lead by

definition to identically the same results."

(An in-words restatement of the FWL theorem.)

– Ragnar Frisch and Frederick V. Waugh [1].

Here we discuss inference on predictive effects using Double

Lasso methods, where we use Lasso (at least) twice to residual-

ize outcomes and a target covariate of interest whose predictive

effect we’d like to infer. Double Lasso methods rely on the ap-

proximate sparsity of the best linear predictors for the outcome

and for the target covariate. The resulting estimator concentrates

in a 1/
√
𝑛 neighborhood of the true value and is approximately

Gaussian, enabling the construction of confidence bands. We

explain the low bias property of the Double Lasso method

using Neyman orthogonality, and isolate the latter as a critical

property for further generalizations.
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1: We discuss assumptions and

modeling frameworks under which

the predictive effect question has a

causal interpretation in detail in

Chapter 5 thrChapter 11. Under

the framework developed in those

chapters, the tools in this chapter

offer one approach to performing

statistical inference for causal ef-

fects. Here, we simply note that

we may be interested in providing

statistical inference for predictive

effects regardless of whether they

have a causal interpretation.

4.1 Introduction

We recall the predictive effect question:
1

▶ How does the predicted value of 𝑌 change if a regressor

𝐷 increases by a unit, while other regressors𝑊 remain

unchanged?

As before, we denote the set of regressors as 𝑋 = (𝐷,𝑊). In

Chapter 1, we discussed how we could use the population

regression coefficient corresponding to the variable 𝐷, denoted

𝛼, to answer this question. We also discussed how to estimate

this effect and construct confidence intervals with regression.

Now we turn to estimation and construction of confidence

intervals for 𝛼 in the high-dimensional setting, using the tools

we developed in Chapter 3.

Here we focus on using Lasso methods. We can use other

penalized methods with the caveat that theoretical guarantees

are not available unless we perform additional data splitting.

We will discuss the use of data splitting and more general

machine learning methods in detail when we introduce "double

machine learning" or "debiased machine learning" in Chapter

9.

4.2 Inference with Double Lasso

Inference on One Coefficient

The key to inference will be the application of Frisch-Waugh-

Lovell partialling-out. Consider the simple predictive model:

𝑌 = 𝛼𝐷 + 𝛽′𝑊 + 𝜖, (4.2.1)

where 𝐷 is the target regressor and 𝑊 consists of 𝑝 controls.

After partialling-out𝑊 ,

𝑌̃ = 𝛼𝐷̃ + 𝜖, E[𝜖𝐷̃] = 0, (4.2.2)

where the variables with tildes are residuals retrieved from

taking out the linear effect of𝑊 (practically, via linear regres-

sion):

𝑌̃ = 𝑌 − 𝛾′𝑌𝑊𝑊, 𝛾𝑌𝑊 ∈ arg min

𝛾∈ℝ𝑝
E[(𝑌 − 𝛾′𝑊)2],

𝐷̃ = 𝐷 − 𝛾′𝐷𝑊𝑊, 𝛾𝐷𝑊 ∈ arg min

𝛾∈ℝ𝑝
E[(𝐷 − 𝛾′𝑊)2].
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𝛼 can then be recovered from population linear regression of 𝑌̃

on 𝐷̃:

𝛼 = arg min

𝑎∈ℝ
E[(𝑌̃ − 𝑎𝐷̃)2] = (E[𝐷̃2])−1

E[𝐷̃𝑌̃].

Note also that 𝑎 = 𝛼 solves the moment equation:

E[(𝑌̃ − 𝑎𝐷̃)𝐷̃] = 0.

We now consider estimation of 𝛼 in a high-dimensional setting.

For estimation purposes, we maintain that we have a random

sample {(𝑌𝑖 , 𝑋𝑖)}𝑛𝑖=1
where 𝑋𝑖 = (𝐷𝑖 ,𝑊𝑖).

To estimate 𝛼, we will mimic the partialling-out procedure in

the population in the sample. In Chapter 1, where 𝑝/𝑛was small,

we employed ordinary least squares as the prediction method in

the partialling-out steps. We are now considering cases where

𝑝/𝑛 is not small, and we instead employ Lasso-based methods

in the partialling-out steps.

The estimation procedure for a target parameter 𝛼 in a high-

dimensional linear model setting can be summarized as fol-

lows:

The Double Lasso procedure:

1. We run Lasso regressions of 𝑌𝑖 on𝑊𝑖 and 𝐷𝑖 on𝑊𝑖

𝛾̂𝑌𝑊 = arg min

𝛾∈ℝ𝑝

∑
𝑖

(𝑌𝑖 − 𝛾′𝑊𝑖)2 + 𝜆1

∑
𝑗

𝜓̂𝑌𝑗 |𝛾𝑗 |,

𝛾̂𝐷𝑊 = arg min

𝛾∈ℝ𝑝

∑
𝑖

(𝐷𝑖 − 𝛾′𝑊𝑖)2+𝜆2

∑
𝑗

𝜓̂𝐷
𝑗 |𝛾𝑗 |,

and obtain the resulting residuals:

𝑌̌𝑖 = 𝑌𝑖 − 𝛾̂′𝑌𝑊𝑊𝑖 ,

𝐷̌𝑖 = 𝐷𝑖 − 𝛾̂′𝐷𝑊𝑊𝑖 .

In place of Lasso, we can use Post-Lasso or other

Lasso relatives (the Dantzig selector, square-root

Lasso, and others).

2. We run the least squares regression of 𝑌̌𝑖 on 𝐷̌𝑖 to
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2: Note that in this case the effec-

tive dimension 𝑠 of the problem is

𝑠 ≈ 𝐴1/𝑎𝑛1/2𝑎 ≪ 𝑛1/2
. Intuitively,

the effective number of non-zero

coefficients grows slower than

√
𝑛.

obtain the estimator 𝛼̂:

𝛼̂ = arg min

𝑎∈ℝ
𝔼𝑛[(𝑌̌ − 𝑎𝐷̌)2]

= (𝔼𝑛[𝐷̌2])−1𝔼𝑛[𝐷̌𝑌̌].
(4.2.3)

We can use standard results from this regression,

ignoring that the input variables were previously

estimated, to perform inference about the predictive

effect, 𝛼.

Good performance of the Double Lasso procedure relies on

approximate sparsity of the population regression coefficients

𝛾𝑌𝑊 and 𝛾𝐷𝑊 , with a sufficiently high speed of decrease in the

sorted coefficients and on careful choice of the Lasso tuning

parameters. For approximate sparsity, we will impose that the

sorted coefficients satisfy

|𝛾𝑌𝑊 |(𝑗) ≤ 𝐴𝑗−𝑎 and |𝛾𝐷𝑊 |(𝑗) ≤ 𝐴𝑗−𝑎

for 𝑎 > 1 and 𝑗 = 1, . . . , 𝑝.
2

Under these sparsity conditions,

we can use the plug-in rule outlined in Chapter 3 for choosing

𝜆1 and 𝜆2. Importantly, using these tuning parameters theoreti-

cally guarantees that we produce high quality prediction rules

for 𝐷 and 𝑌 while simultaneously avoiding overfitting under

approximate sparsity. Absent these guarantees, we cannot theo-

retically ensure that first step estimation of 𝐷̌ and 𝑌̌ does not

have first-order impacts on the final estimator 𝛼̂. Practically,

we have found that Lasso with penalty parameter selected via

cross-validation can perform poorly in simulations in moder-

ately sized samples. We return to this issue in Chapter 9 where

we discuss a method that allows the use of complex machine

learners, including Lasso and other regularized estimators, and

data-driven tuning (e.g. cross-validation).

The following theorem can be shown for the Double Lasso

procedure:

Theorem 4.2.1 (Adaptive Inference with Double Lasso in

High-Dimensional Regression) Under the stated approximate
sparsity, the conditions required for Theorem 3.2.1 (e.g. restricted
isometry), and additional regularity conditions, the estimation error
in 𝐷̌𝑖 and 𝑌̌𝑖 has no first order effect on 𝛼̂, and

√
𝑛(𝛼̂ − 𝛼) ≈

√
𝑛𝔼𝑛[𝐷̃𝜖]/𝔼𝑛[𝐷̃2] a∼ 𝑁(0, V),
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where
V = (E[𝐷̃2])−1

E[𝐷̃2𝜖2](E[𝐷̃2])−1.

The above statement means that 𝛼̂ concentrates in a

√
V/𝑛-

neighborhood of 𝛼, with deviations controlled by the normal

law. Observe that the approximate behavior of the Double Lasso

estimator is the same as the approximate behavior of the least

squares estimator in low-dimensional models; see Theorem

1.3.2 in Chapter 1.

Just like in the low-dimensional case, we can use these results

to construct a confidence interval for 𝛼. The standard error of 𝛼̂
is √

V̂/𝑛,

where V̂ is a plug-in estimator of V. The result implies, for

example, that the interval

[𝛼̂ ± 1.96

√
V̂/𝑛]

covers 𝛼 about 95% of the time.

Application to Testing the Convergence

Hypothesis

R Notebook on Double Lasso for

Growth Convergence and Python

Notebook on Double Lasso for

Growth Convergence provides

code for the convergence hypothe-

sis example.

We provide an empirical example of partialling-out with Lasso

to estimate the regression coefficient 𝛼 in the high-dimensional

linear regression model:

𝑌 = 𝛼𝐷 + 𝛽′𝑊 + 𝜖.

In this example, we are interested in how economic growth

rates (𝑌) are related to the initial wealth levels in each country

(𝐷) controlling for a country’s institutional, educational, and

other similar characteristics (𝑊).

The relationship is captured by 𝛼, the "speed of convergence/-

divergence," which predicts the speed at which poor countries

catch up (𝛼 < 0) or fall behind (𝛼 > 0) rich countries, after

controlling for 𝑊 . Here, we are interested in understanding

if poor countries grow faster than rich countries, controlling

for educational and other characteristics. In other words, is the

speed of convergence negative: Is 𝛼 < 0? 𝛼 < 0 corresponds to the Con-

vergence Hypothesis predicted by

the Solow growth model. Robert

M. Solow is a world-renowned

MIT economist who won the Nobel

Prize in Economics in 1987.

In our data, the outcome (𝑌) is the realized annual growth

rate of a country’s wealth (Gross Domestic Product per capita).

The target regressor (𝐷) is the initial level of the country’s

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_convergence_hypothesis_double_lasso.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_convergence_hypothesis_double_lasso.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_convergence_hypothesis_double_lasso.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_convergence_hypothesis_double_lasso.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_convergence_hypothesis_double_lasso.ipynb
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wealth. The controls (𝑊) include measures of education levels,

quality of institutions, trade openness, and political stability

in the country. The sample, which is based on the Barro-Lee

data set [2], contains 90 countries and about 60 controls. Thus

𝑝 ≈ 60, 𝑛 = 90 and 𝑝/𝑛 is not small. We expect the least squares

method to provide a poor/ noisy estimate of 𝛼. We expect

the method based on partialling-out with Lasso to provide a

high-quality estimate of 𝛼.

Estimate Std. Error 95% CI

OLS -0.009 0.032 [-0.073, 0.054]

Double Lasso -0.045 0.018 [-0.080, -0.010]

Table 4.1: Estimates for the conver-

gence coefficient. We report specifi-

cation robust standard errors with

finite sample correction, i.e., "HC1."

Least squares provides a rather noisy estimate of convergence

speed, which does not allow drawing strong conclusions about

the convergence hypothesis. For example, the 95% confidence

interval is wide and includes both positive and negative val-

ues. Given that 𝑝/𝑛 is not small in this example, we should

also be highly skeptical of the OLS results and especially the

standard error. For example, [3] show that conventional robust

standard errors are not even consistent in linear models when

𝑝/𝑛 is not small. In sharp contrast, Double Lasso provides

a precise estimate for which we can obtain theoretically jus-

tified inferential statements even though 𝑝/𝑛 is not close to

0. The Lasso-based point estimate is −4.5% and the 95% con-

fidence interval for the (annual) convergence rate is −8% to

−1%. This empirical evidence is consistent with the conditional

convergence hypothesis.

4.3 Why Partialling-out Works: Neyman

Orthogonality

Neyman Orthogonality

In the Double Lasso approach, 𝛼 is the target parameter and 𝜂
are nuisance projection parameters with true value

𝜂𝑜 = (𝛾′𝐷𝑊 , 𝛾
′
𝑌𝑊 )

′.

As the learned value 𝛼̂ of 𝛼 depends on the values of the

nuisance parameters, it is useful to explicitly consider the

dependence of 𝛼̂ on the nuisance parameters:

𝛼̂(𝜂).
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For the majority of the estimation processes we will describe in

this book, we can construct a population analogue

𝛼(𝜂)

of the estimator 𝛼̂(𝜂), such that the in-sample estimation proce-

dure converges to it, in a formal sense.

For instance, the Double Lasso process constructs the residu-

als

𝑌̌𝑖(𝜂) = 𝑌𝑖 − 𝜂′
1
𝑊𝑖 , 𝐷̌𝑖(𝜂) = 𝐷𝑖 − 𝜂′

2
𝑊𝑖

and then obtains 𝛼̂(𝜂) as the solution to the empirical estimating

equation

M̂(𝑎, 𝜂) := 𝔼𝑛[(𝑌̌(𝜂) − 𝑎𝐷̌(𝜂))𝐷̌(𝜂)] = 0.

This process implicitly defines the function 𝛼̂(𝜂). We can think

of the population analog of this process, where we construct

the residuals

𝑌̃(𝜂) = 𝑌 − 𝜂′
1
𝑊, 𝐷̃(𝜂) = 𝐷 − 𝜂′

2
𝑊

and solve the population moment equation

M(𝑎, 𝜂) := E[(𝑌̃(𝜂) − 𝑎𝐷̃(𝜂))𝐷̃(𝜂)] = 0, (4.3.1)

which again implicitly defines the function 𝛼(𝜂).

The main idea of the Double Lasso approach is that, in the

population limit, it corresponds to a procedure for learning

the target parameter 𝛼 that is first-order insensitive to local

perturbations of the nuisance parameters around their true

values, 𝜂𝑜 : Formally, we use 𝜕𝜂 to denote the

Gateaux derivative. See Remark

9.4.2 in Chapter 9 for more details.𝜕𝜂𝛼(𝜂𝑜) = 0. (4.3.2)

We will call the local insensitivity of target parameters to nui-

sance parameters as in (4.3.2) Neyman orthogonality of the

estimation process.

Neyman orthogonality is important for providing high-quality

estimation and inference, especially in high-dimensional set-

tings. In high-dimensional settings, we use regularization pro-

cedures to estimate the nuisance parameters as solutions to

suitable prediction problems. The use of regularization gen-

erally results in bias, and we may heuristically view using

regularized estimates of nuisance parameters as plugging in

estimates of these parameters that are close to, but not exactly

equal to, the true values of the nuisance parameters 𝜂𝑜 . Neyman
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orthogonality, which guarantees that the target parameter is

locally insensitive to perturbations of the nuisance parameters

around their true values, then ensures that this bias does not

transmit to the estimation of the target parameter, at least to the

first order.

Let us prove the claim 𝜕𝜂𝛼(𝜂𝑜) = 0 for the Double Lasso process.

Since the function 𝛼(𝜂) is implicitly defined as the solution to

the equation M(𝑎, 𝜂) = 0, by the implicit function theorem and

letting 𝛼 = 𝛼(𝜂𝑜):

𝜕𝜂𝛼(𝜂𝑜) = −𝜕𝑎M(𝛼, 𝜂𝑜)−1𝜕𝜂M(𝛼, 𝜂𝑜).

Here

𝜕𝜂M(𝛼, 𝜂𝑜)

consists of two components

𝜕𝜂1
M(𝛼, 𝜂𝑜) = E[𝑊𝐷̃(𝜂𝑜)] = E[𝑊(𝐷 − 𝛾′𝐷𝑊𝑊)] = 0

and

𝜕𝜂2
M(𝛼, 𝜂𝑜) = − E[𝑊𝑌̃(𝜂𝑜)] + 2E[𝛼𝑊𝐷̃(𝜂𝑜)]

= − E[𝑊(𝑌 − 𝛾′𝑌𝑊𝑊)] + 2E[𝛼𝑊(𝐷 − 𝛾′𝐷𝑊𝑊)] = 0.

We summarize the discussion as follows:

Neyman Orthogonality. The parameter of interest 𝛼 that

depends on nuisance parameters 𝜂 with true value 𝜂𝑜 is

Neyman orthogonal with respect to these parameters if

𝜕𝜂𝛼(𝜂𝑜) = 0.

If the parameter 𝛼 is defined as a root in 𝑎 of the equation

M(𝑎, 𝜂) = 0, which depends on the nuisance parameters 𝜂
with true value 𝜂𝑜 , then the equation is Neyman orthogonal

if

𝜕𝜂M(𝛼, 𝜂𝑜) = 0.

The principle is applicable to problems outside the high-

dimensional linear model problem considered in this chap-

ter.

https://en.wikipedia.org/wiki/Implicit_function_theorem
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3: In "pure" RCTs where treatment

is assigned independently of ev-

erything, 𝐷’s are orthogonal to𝑊 ,

after de-meaning𝐷, so Neyman or-

thogonality automatically holds in

this setting.

What Happens if We Don’t Have Neyman

Orthogonality?

If we don’t have Neyman orthogonality, we should not expect

to get high-quality estimates of the target parameters. For

example, a seemingly sensible approach that one might consider

for statistical inference in the high-dimensional linear model

context is as follows:

(Invalid) Single Selection/Naive Method.

In this invalid method, one applies Lasso regression of𝑌 on

𝐷 and𝑊 to select relevant covariates𝑊𝑌 , in addition to the

covariate of interest, then refits the model by least squares

of 𝑌 on 𝐷 and 𝑊𝑌 . Inference for the target parameter is

then carried out using conventional inference based on the

latter regression.

Despite its simplicity and seeming intuitive appeal, the ap-

proach outlined above is not a valid approach if the goal is

to perform inference on 𝛼. It is a fine approach if the goal is

solely the prediction of the outcome, but it can result in very

misleading conclusions about the parameter of interest 𝛼, as

we demonstrate in Example 4.3.1 below.

The naive approach outlined above relies on the moment con-

dition

M(𝑎, 𝑏) = E[(𝑌 − 𝑎𝐷 − 𝑏′𝑊)𝐷] = 0.

When 𝑏 = 𝛽, this moment condition is satisfied by the true

value, 𝑎 = 𝛼. In this case, it coincides with the classical moment

condition for 𝛼 underlying low-dimensional ordinary least

squares which sets prediction errors to be orthogonal to each

predictor variable.

However, this moment condition does not exhibit Neyman

orthogonality since

𝜕𝑏M(𝛼, 𝛽) = E[𝐷𝑊] ≠ 0

unless 𝐷 is orthogonal to𝑊 .
3

Because M(𝑎, 𝑏) is not Neyman

orthogonal, the bias and the slower than parametric rate of

convergence, √
𝑠 log(𝑝 ∨ 𝑛)/𝑛,

of our estimate of 𝛽′𝑊 will transmit to bias and slower than

√
𝑛

convergence in estimates of 𝛼 provided by solving the empirical

analog of M(𝑎, 𝑏). The "Single Selection" procedure outlined
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above exactly provides the solution to this moment condition.

Consequently, while this naive procedure provides an estimator

of 𝛼 that will approach the true value in large samples (at

a slower than

√
𝑛-rate), the bias of the estimator converges

too slowly for standard inference methods to provide reliable

inference.

We can set up a simulation experiment to verify that this naive

approach provides low-quality estimates for 𝛼.

Example 4.3.1 In R Notebook with Experiment on Orthogonal

vs Non-Orthogonal Learning and Python Notebook with

Experiment on Orthogonal vs Non-Orthogonal Learning,

we compare the performance of the naive and orthogonal

methods in a computational experiment where 𝑝 = 𝑛 = 100,

𝛽 𝑗 = 1/𝑗2, (𝛾𝐷𝑊 )𝑗 = 1/𝑗2, and

𝑌 = 1 · 𝐷 + 𝛽′𝑊 + 𝜀𝑌 , 𝑊 ∼ 𝑁(0, 𝐼), 𝜀𝑌 ∼ 𝑁(0, 1)

𝐷 = 𝛾′𝐷𝑊𝑊 + 𝐷̃, 𝐷̃ ∼ 𝑁(0, 1)/4.

From the histograms shown in Figure 4.1, we see that the

naive estimator is heavily biased, as expected from the lack of

Neyman orthogonality in its estimation strategy. We also see

that the Double Lasso estimator, which is based on principled

partialling-out such that Neyman orthogonality is satisfied,

is approximately unbiased and Gaussian.

The reason that the naive estimator does not perform well is

that it only selects controls that are strong predictors of the

outcome, thereby omitting weak predictors of the outcome.

However, weak predictors of the outcome could still be strong

predictors of 𝐷, in which case dropping these controls results

in a strong omitted variable bias. In contrast, the orthogonal

approach solves two prediction problems – one to predict 𝑌

and another to predict 𝐷 – and finds controls that are relevant

for either. The resulting residuals are therefore approximately

"de-confounded."

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_orthogonal_orig.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_orthogonal_orig.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_orthogonal_orig.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_orthogonal_orig.ipynb
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Figure 4.1: Top Panel: Simulated

distribution of the orthogonal es-

timator centered around the true

value. Bottom Panel: Simulated

distribution of the naive (single-

selection) non-orthogonal estima-

tor centered around the true value.
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4.4 Inference on Many Coefficients

If we are interested in more than one coefficient, we can repeat

the one-by-one Double Lasso procedure for each of the coeffi-

cients of interest and obtain valid estimation and inference on

each component under regularity conditions.

We consider the model

𝑌
Outcome

=

𝑝1∑
ℓ=1

𝛼ℓ𝐷ℓ

Target Predictors

+
𝑝2∑
𝑗=1

𝛽 𝑗𝑊̄𝑗

Controls

+ 𝜖,

where we use 𝐷ℓ for ℓ = 1, ..., 𝑝1 to denote the predictors of

interest and 𝑊̄𝑗 for 𝑗 = 1, ..., 𝑝2 to denote other predictors in

the model. Here, both the number of predictors of interest, 𝑝1,

and the number of additional variables, 𝑝2, can both be very

large.

There are at least three motivations for considering many coeffi-

cients of interest:

▶ there can be multiple policies whose predictive effect we

would like to infer;

▶ we can be interested in heterogeneous predictive effects

across pre-specified groups;

▶ we can be interested in nonlinear effects of policies.

This setting encompasses examples where we are interested in

heterogeneous effects, where 𝐷′
ℓ
𝑠 are generated as

𝐷ℓ = 𝐷0𝑋̄ℓ , ℓ = 1, ..., 𝑝1,

where𝐷0 is a base variable of interest – for example, a treatment

indicator, a price, or a group indicator – and (𝑋̄ℓ )𝑝1

ℓ=1
are known

transformations of controls 𝑊̄ – for example, various subgroup

indicators.

The setting also encompasses cases where nonlinear effects are

of interest. For example, we could consider 𝐷ℓ ’s generated as

polynomial transformations of a multi-valued base variable,

such as a price:

𝐷ℓ = 𝐷ℓ
0
, ℓ = 1, ..., 𝑝1.

We could further interact these transformations with other

variables to study nonlinear heterogeneous effects.
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One by One Double Lasso for Many Target Parameters.

For each ℓ = 1, ..., 𝑝1, we apply the one-by-one Double Lasso

procedure for estimation and inference on the coefficient

𝛼ℓ in the model

𝑌 = 𝛼𝑙𝐷ℓ + 𝛾′ℓ𝑊ℓ + 𝜖, 𝑊ℓ = ((𝐷𝑘)′𝑘≠ℓ , 𝑊̄
′)′.

Under approximate sparsity conditions, the Double Lasso

method provides a high-quality estimate 𝛼̂ = (𝛼̂ℓ )𝑝1

ℓ=1
of 𝛼 =

(𝛼ℓ )𝑝1

ℓ=1
that is approximately Gaussian. We can thus easily

construct individual confidence intervals or even joint confi-

dence bands. Under regularity conditions, these results allow

for simultaneous inference on 𝑝1 > 𝑛 coefficients.

Theorem 4.4.1 (Double Lasso for Many Coefficients) Under
regularity conditions including approximate sparsity as in Defi-
nition 3.1.1 with parameters (𝐴, 𝑎) with 𝑎 > 1 in all partialling
out steps and provided (log 𝑝1)5/𝑛 is small, we have the adaptivity
property,√

log 𝑝1 max

ℓ≤𝑝1

��√𝑛(𝛼̂ℓ − 𝛼ℓ ) − (𝔼𝑛[𝐷̃2

ℓ ])
−1

√
𝑛𝔼𝑛[𝐷̃ℓ 𝜖]

�� ≈ 0,

and, consequently, the Gaussian approximation
√
𝑛(𝛼̂ − 𝛼) a∼ 𝑁(0, V),

where
Vℓ 𝑘 = (E[𝐷̃2

ℓ ])
−1

E[𝐷̃ℓ 𝐷̃𝑘𝜖
2](E[𝐷̃2

𝑘
])−1.

Recall that the above distributional approximation formally

means that

sup

𝑅∈R

���P (√
𝑛(𝛼̂ − 𝛼) ∈ 𝑅

)
− P (𝑁(0, V) ∈ 𝑅)

���→ 0,

where R is a collection of all (hyper) rectangles. The latter result

allows the construction of simultaneous confidence bands on all

target parameters 𝛼ℓ ’s of the form:

𝐶𝑅 = ×𝑝1

ℓ=1

[
𝛼̂ℓ ± 𝑐

√
V̂ℓℓ/𝑛

]
,

The critical value 𝑐 in the simultaneous confidence band is
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chosen so that

P(𝛼 ∈ 𝐶𝑅) = P

(√
𝑛(𝛼 − 𝛼̂) ∈

√
𝑛(𝐶𝑅 − 𝛼̂)

)
= P

(√
𝑛(𝛼ℓ − 𝛼̂ℓ ) ∈ [±𝑐V̂1/2

ℓℓ
] ∀ ℓ ∈ {1, ..., 𝑝1}

)
≈ 1 − a

where 1 − a denotes the confidence level.

Remark 4.4.1 (Details on critical values) It can be shown that

an "ideal" choice of 𝑐 is

𝑐 = (1 − a) − quantile of




𝑁 (
0,D−1/2VD−1/2

)



∞
,

where D = diag(V) is a matrix with variances (Vℓℓ )𝑝1

ℓ=1
on the

diagonal and zeroes off the diagonal. The critical value 𝑐 can

therefore be approximated by simulation plugging in V = V̂.

Please see [4], for example, for more details. Note that 𝑐 is

generally no smaller than the (1 − a/2)-quantile of a 𝑁(0, 1),
so the simultaneous confidence bands are always no smaller

than the component-wise confidence bands.

Remark 4.4.2 (Simultaneous vs. Marginal Confidence In-

tervals) A simultaneous confidence band guarantees that in

repeated experiments the entire set of coefficients is covered

by their respective intervals with a specified probability. For

example, a 95% simultaneous confidence band means that if

the experiment were repeated many times, every coefficient

would lie within its interval in 95% of those repetitions.

In contrast, marginal confidence intervals ensure that each indi-

vidual coefficient is covered 95% of the time when considered

separately. However, when examining multiple coefficients

simultaneously, these individual guarantees do not translate

into 95% overall coverage. If there are 𝑝1 coefficients, the

probability that all are correctly covered is

(0.95)𝑝1 .

Thus, the probability of at least one interval failing is

1 − (0.95)𝑝1 ,

which can be significantly larger than 5% as 𝑝1 increases.

This distinction is especially important when reporting dis-
coveries by noting coefficients whose intervals exclude 0. With
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marginal intervals, the chance that such a finding is a false dis-

covery is 1− (0.95)𝑝1
, rather than the nominal 5%. In contrast,

a 95% simultaneous confidence band controls the overall

error probability at or below 5%.

While simultaneous bands provide robust family-wise error

rate control, alternative procedures aimed at controlling the

false discovery rate (FDR) may be less conservative. Such

methods can be used in conjunction with the marginal confi-

dence interval and 𝑝-value constructions we discuss in this

book (see, e.g., [5]; [6]).

Discovering Heterogeneity in the Wage Gap

Analysis

We apply the Double Lasso method of the preceding sec-

tion to analyze heterogeneity of wage gaps using CPS 2015

data. As in Chapter 1, we use the log hourly wage as the

outcome variable. To explore heterogeneity, we interact the

female indicator with group indicators capturing education

groups (Some High School (shs), High School Graduate (hsg),

Some College (scl), College Graduate (clg), Advanced Degree

(ad)), region indicators – Midwest (mw), South (so), West

(we)) and a fourth degree polynomial in experience (exp1=
Experience, exp2= Experience

2/100, exp3= Experience
3/1000,

exp4= Experience
4/10000). In total these are 12 target param-

eters corresponding to the 11 interactive variables and the

non-interactive variable that corresponds to the female indi-

cator. All engineered variables used for heterogeneity were

de-meaned prior to taking the interaction with sex, while the

sex variable was not de-meaned. Hence, the interaction coeffi-

cients can be interpreted as "predictive effect modifiers," and

the coefficient associated with the non-interactive variable sex
as the average predictive effect. As additional variables, we

also include all pairwise interactions of the aforementioned

variables (excluding sex), as well as one-hot-encodings for occu-

pation and industry sector, providing 990 engineered features.

All engineered variables used as controls were also de-meaned

prior to estimation.

Table 4.2 provides estimated coefficients, standard errors, point-

wise p-values, and the 95% simultaneous confidence band for

the coefficients on sex and its interactions with the schooling

(shs, hsg, scl, clg, and ad), region (mw, so, and we), and expe-

rience (exp1, exp2, exp3, and exp4) variables described above.

Rows give variable names with "*" indicating interaction; e.g.
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Estimate Std. Error p-value

sex -0.07 0.01 0.00

sex:shs -0.32 0.19 0.08

sex:hsg 0.05 0.05 0.29

sex:scl 0.03 0.05 0.49

sex:clg 0.06 0.05 0.19

sex:mw -0.12 0.04 0.01

sex:so -0.08 0.04 0.06

sex:we -0.03 0.04 0.50

sex:exp1 0.02 0.01 0.12

sex:exp2 -0.04 0.07 0.59

sex:exp3 -0.05 0.03 0.18

sex:exp4 -0.00 0.00 0.98

Table 4.2: Estimates of Heteroge-

neous Predictive Effects in the CPS

2015 data

the row sex*shs provides results for the interaction between sex
and shs.

Among other things, we see that having a college degree in-

creases the predictive effect, i.e. decreases the wage gap, while

the largest increase in wage gap occurs for un-educated workers.

However, these heterogeneities are not statistically significant.

Moreover, the wage gap is predicted to be larger in the Midwest

region. Having a high potential experience also predicts larger

drops in wages for female workers. Of course, the simultaneous

confidence regions include 0 for all coefficients except for the

main effect on sex suggesting that it may be difficult to draw

any strong conclusions about heterogeneity of predictive effects

in this example.
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Estimate CI lower CI upper

sex -0.07 -0.11 -0.03

sex:shs -0.32 -0.85 0.20

sex:hsg 0.05 -0.09 0.20

sex:scl 0.03 -0.11 0.17

sex:clg 0.06 -0.07 0.19

sex:mw -0.12 -0.25 0.00

sex:so -0.08 -0.20 0.04

sex:we -0.03 -0.16 0.10

sex:exp1 0.02 -0.01 0.04

sex:exp2 -0.04 -0.23 0.16

sex:exp3 -0.05 -0.14 0.05

sex:exp4 -0.00 -0.01 0.01

Table 4.3: Simultaneous 95% Confi-

dence Intervals for the Estimates of

Heterogeneous Predictive Effects

in the CPS 2015 data.

4.5 Other Approaches That Have the

Neyman Orthogonality Property

Double Selection

One way to fix the naive "single selection" approach outlined in

Section 4.3 would be to have "double selection":

Double Selection

▶ find controls𝑊𝑌 that predict 𝑌 as judged by lasso;

▶ find controls𝑊𝐷 that predict 𝐷 as judged by lasso;

▶ regress 𝑌 on 𝐷 and the union of controls𝑊𝑌 ∪𝑊𝐷 ;

proceed with standard inference.

This procedure is approximately equivalent to the partialling

out approach, and therefore inherits the orthogonality property.

This approach is more conservative compared to single selection,

as it makes sure that we have not omitted controls that are strong

confounders for 𝐷. It therefore guards against large omitted

variable biases.

Debiased Lasso

Yet another procedure that has the orthogonality property and is

approximately equivalent to the partialling out approach under

suitable conditions is the debiased (also called desparsified)

Lasso.
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This approach uses the fact that 𝑎 = 𝛼 solves the equation,

M(𝑎, 𝜂) = E[(𝑌 − 𝑎𝐷 − 𝑏′𝑊)𝐷̃(𝛾)] = 0,

when 𝜂 = (𝑏′, 𝛾′)′ = 𝜂𝑜 := (𝛽′, 𝛾′
𝐷𝑊
)′ for 𝛾𝐷𝑊 the best linear

predictor coefficient from regressing 𝐷 onto𝑊 and

𝐷̃(𝛾) = 𝐷 − 𝛾′𝑊.

One can verify that

𝛼(𝜂) =
(
E[𝐷𝐷̃(𝛾)]

)−1

E

[
(𝑌 − 𝑏′𝑊)𝐷̃(𝛾)

]
,

and that

𝛼 = 𝛼(𝜂𝑜).

Further, the moment condition is Neyman orthogonal – verifi-

cation of which is left to the reader – which implies that

𝜕𝜂𝛼(𝜂𝑜) = 0,

similarly to the argument for Double Lasso.

Debiased Lasso

▶ Run a Lasso estimator with suitable choice of 𝜆 as

discussed in Chapter 3 of 𝑌 on 𝐷 and 𝑊 , and save

the coefficient estimate 𝛽̂.

▶ Run a Lasso estimator with suitable choice of 𝜆 as

discussed in Chapter 3 of 𝐷 on 𝑊 and save the

coefficient estimate 𝛾̂.

▶ The estimator 𝛼̂ is then the solution of the empirical

analog of the moment condition above:

𝔼𝑛[(𝑌 − 𝛼̂𝐷 − 𝛽̂′𝑊)𝐷̃(𝛾̂)] = 0,

which has the explicit form

𝛼̂ =
(
𝔼𝑛[𝐷𝐷̃(𝛾̂)]

)−1

𝔼𝑛
[
(𝑌 − 𝛽̂′𝑊)𝐷̃(𝛾̂)

]
,

where 𝛽̂ and 𝛾̂ are Lasso estimators.

Estimators of this form are referred to in econometrics as

"instrumental variable estimators." In purely technical terms,

we are using residualized 𝐷̃ to "instrument" for 𝐷.



4 Statistical Inference on Predictive Effects in High-Dimensional
Linear Regression Models 117

4.6 Notes

We mainly follow the Double Lasso approach developed in [7]

and [8], because it is nicely connected to the classical partialling

out. Desparsified Lasso was developed by [9] and [10]; a closely

related approach is the debiased Lasso proposed by [11]. All

of these approaches could be called "debiased" Lasso and

will generalize later to the approach called Debiased Machine

Learning. The Double Selection method was developed by [12]

and [13]. Inference on many coefficients using Double Lasso

was first developed by [14] and [15]. [16] provide results for

Double Lasso with clustered dependence. The Double Lasso

and desparsified Lasso approaches have also been extended

to time series and many time series by [17]. Both [16] and [17]

take into account the temporal dependencies in the data when

fitting Lasso and performing inference on the coefficients of

interest.

Failure of single selection even when 𝑝 is small is discussed in

simple terms in [13], but the problem was first systematically

examined by [18]. A recent paper [19] develops debiasing meth-

ods for shape constrained high-dimensional linear regression

models.

[4] provide a recent survey on methods for simultaneous infer-

ence in high-dimensional settings.

For an in-depth analysis of heterogeneity in the wage gap based

on Lasso, we refer to [20].

4.7 Notebooks

Notebook 4.7.1 (Orthogonal vs Non-Orthogonal Learning) R

Notebook with Experiment on Orthogonal vs Non-Orthogonal

Learning and Python Notebook with Experiment on Orthog-

onal vs Non-Orthogonal Learning presents the simulation

experiment comparing orthogonal (partialling-out) with non-

orthogonal learning (naive method).

Notebook 4.7.2 (Hard Sparsity on Orthogonal vs Non-Orthog-

onal) R Notebook with Hard Sparsity on Orthogonal vs Non-

Orthogonal Learning and Python Notebook with Hard Spar-

sity on Orthogonal vs Non-Orthogonal Learning presents

an alternative simulation to that shown in the main text

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_orthogonal_orig.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_orthogonal_orig.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_orthogonal_orig.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_orthogonal_orig.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_orthogonal_orig.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_experiment_non_orthogonal.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_experiment_non_orthogonal.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_experiment_non_orthogonal.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_experiment_non_orthogonal.ipynb
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comparing orthogonal (partialling-out) with non-orthogonal

learning. In this simulation, we consider orthogonal and non-

orthogonal learning in a stylized treatment effects simulation.

Notebook 4.7.3 (Double Lasso for Growth Convergence) R

Notebook on Double Lasso for Growth Convergence and

Python Notebook on Double Lasso for Growth Convergence

presents a Double Lasso analysis of the conditional conver-

gence hypothesis in growth economics.

Notebook 4.7.4 (Double Lasso for the Heterogeneous Wage

Gap) R Notebook on Double Lasso for the Heterogeneous

Wage Gap and Python Notebook on Double Lasso for the

Heterogeneous Wage Gap presents a Double Lasso analysis

of the heterogeneous wage gap.

4.8 Exercises

Exercise 4.8.1 Experiment with the first Notebooks 4.7.1. Try

different models. For example, try different coefficient struc-

tures for 𝛽 and 𝛾𝐷𝑊 and/or different covariance structures

for𝑊 . Provide an explanation to a friend for what each step

in the Double Lasso procedure is doing.

Exercise 4.8.2 (Double Lasso for Growth Convergence) Ex-

plore the Notebooks 4.7.3. Provide an explanation to a friend

for what each step in the Double Lasso procedure is doing.

Explain the empirical results to a friend. Experiment with mak-

ing the set of controls more flexible and higher-dimensional

by adding nonlinear and/or interaction terms that seem po-

tentially interesting. Comment on how the results differ from

the baseline results.

Exercise 4.8.3 (Double Lasso for the Heterogeneous Wage

Gap) Explore the Notebooks 4.7.4. Provide an explanation

to a friend for what each step in the inference procedure is

doing. Explain the empirical results to a friend.

Exercise 4.8.4 (Neyman Orthogonality) Verify that Neyman

orthogonality holds for the "de-sparsified" Lasso strategy.

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_convergence_hypothesis_double_lasso.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_convergence_hypothesis_double_lasso.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_convergence_hypothesis_double_lasso.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_heterogenous_wage_effects.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_heterogenous_wage_effects.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_heterogeneous_wage_effects.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_heterogeneous_wage_effects.ipynb
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4.A High-Dimensional Central Limit

Theorems
★

Let 𝑋1, . . . , 𝑋𝑛 be independent (but not necessarily identically

distributed) random vectors with dimension 𝑝. Assume that

𝑋𝑖’s have mean zero (otherwise, work with 𝑋𝑖 − E [𝑋𝑖] instead

of 𝑋𝑖 ). Consider the scaled sample mean

𝑆𝑛 =
1√
𝑛

𝑛∑
𝑖=1

𝑋𝑖 .

Let 𝜎̄, 𝜎 be given positive constants such that 𝜎 ⩽ 𝜎̄, and let

𝐵𝑛 ⩾ 1 be a sequence of constants that may diverge as 𝑛 →∞.

Let Σ𝑛 = E

[
𝑆𝑛𝑆

𝑇
𝑛

]
= 𝑛−1

∑𝑛
𝑖=1

E

[
𝑋𝑖𝑋

𝑇
𝑖

]
. Also, let R denote

the collection of closed rectangles in ℝ𝑝
.

We first present a high-dimensional CLT over the rectangles

under a sub-exponential condition on the coordinates. Suppose

that the coordinates of 𝑋𝑖 are sub-exponential with scale 𝐵𝑛 ,

then

sup

𝑅∈R
|P (𝑆𝑛 ∈ 𝑅) − P(𝑁(0,Σ𝑛) ∈ 𝑅)| ≈ 0, (4.A.1)

provided that 𝐵2

𝑛 log
5(𝑝𝑛)/𝑛 ≈ 0. Note that this allows 𝑝 to be

much larger than 𝑛. It turns out that a similar result applies

without sub-exponential conditions, as stated formally below.

To state the results in a finite-sample form, let

𝛿1,𝑛 :=

(
𝐵2

𝑛 log
5(𝑝𝑛)
𝑛

)1/4

𝛿
[𝑞]
2,𝑛

:=

√
𝐵2

𝑛(log(𝑝𝑛))3−2/𝑞

𝑛1−2/𝑞 ,

for 𝑞 > 2.

Theorem 4.A.1 (High-Dimensional CLT, [21]) Suppose second
moments are non-degenerate, min𝑗⩽𝑝 𝑛

−1
∑𝑛
𝑖=1

E

[
𝑋2

𝑗𝑖

]
⩾ 𝜎2, and

fourth moments obey max𝑗⩽𝑝 𝑛
−1

∑𝑛
𝑖=1

E

[
𝑋4

𝑗𝑖

]
⩽ 𝐵2

𝑛 𝜎̄
2.

(A) If coordinates are subexponential, i.e. max𝑖⩽𝑛;𝑗⩽𝑝 E

[
𝑒 |𝑋𝑗𝑖 |/𝐵𝑛

]
⩽

2, then

sup

𝑅∈R
|P (𝑆𝑛 ∈ 𝑅) − P(𝑁(0,Σ𝑛) ∈ 𝑅)| ≤ 𝐶𝛿1,𝑛 ,

where 𝐶 is a constant that depends only on 𝜎 and 𝜎̄.
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4: The requirement that approxi-

mation error, denoted R𝑛 , vanishes

faster than 1/
√

log 𝑝 arises from the

fact that the maximum of a Gaus-

sian random vector𝑁(0,Σ) concen-

trates in (i.e., places a probability

mass of near 1 to) a 1/
√

log 𝑝- neigh-

borhood of its expected value, but

not in smaller neighborhoods (anti-

concentration). The approximation

error R𝑛 needs to be much smaller

than the size of the neighborhood.

Otherwise, the probabilistic errors

incurred by Gaussian approxima-

tion to the distribution of 𝑆̂ can

be as large as 1, meaning that the

Gaussian approximation fails.

(B) If the envelope of the coordinates admits a moment bound
max𝑖⩽𝑛 E

[
∥𝑋𝑖 ∥𝑞∞

]
≤ 𝐵𝑞𝑛 for some 𝑞 > 2, then

sup

𝑅∈R
|P (𝑆𝑛 ∈ 𝑅) − P(𝑁(0,Σ𝑛) ∈ 𝑅)| ≤ 𝐶

(
𝛿1,𝑛 ∨ 𝛿

[𝑞]
2,𝑛

)
where 𝐶 is a constant that depends only on 𝑞, 𝜎 and 𝜎̄.

Notably, the above theorem does not impose any restrictions on

the correlation structure between the coordinates of the random

vectors, so Σ𝑛 is permitted to be singular.

As discussed in [22], the assumption of Part (A) is satisfied if, for

example,

��𝑋𝑗𝑖 �� ⩽ 𝐵𝑛 for all (𝑖 , 𝑗), but also allows for unbounded

coordinates. Part (B) covers the following scenario relevant

to regression applications: 𝑋𝑖 = 𝜖𝑖𝑧𝑖 where 𝜖𝑖 is a univariate

"error" term while 𝑧𝑖 ∈ ℝ𝑝
is a vector of fixed "covariates." In

this case, E

[
∥𝑋𝑖 ∥𝑞∞

]
⩽ ∥𝑧𝑖 ∥𝑞∞ E

[
|𝜖𝑖 |𝑞

]
, so if the covariates are

uniformly bounded and the 𝑞-th moments of the error terms

are bounded, then 𝐵𝑛 = 𝑂(1). Notably this only requires 𝜖𝑖 to

have 𝑞 = 2 + 𝛿 bounded moments.

Often, statistics of interest are not exactly sample means, but can

be well approximated by sample means. For example, the Dou-

ble Lasso estimator, 𝛼̂ = (𝔼𝑛[𝐷̌2])−1𝔼𝑛[𝐷̌𝑌̌] ≈ (E[𝐷̃2])−1𝔼𝑛[𝐷̃𝑌̃],
takes this form. In order to claim a High-Dimensional CLT for

such statistics, we need the approximation error to vanish at

the rate faster than 1/
√

log 𝑝.
4

Lemma 4.A.2 (High-dimensional CLT for approximate sample

mean) . Suppose that 𝑆𝑛 obeys (4.A.1), but 𝑆𝑛 is not directly

available. Suppose instead that we have access to 𝑆𝑛 that

approximates 𝑆𝑛 such that 𝑆𝑛 = 𝑆𝑛+R𝑛 with

√
log 𝑝 ∥R𝑛 ∥∞ ≈

0. Assume min𝑗⩽𝑝 Σ𝑗 𝑗 ⩾ 𝜎2
. Then the same conclusion holds

with 𝑆𝑛 replaced by 𝑆𝑛 .

The lemma follows from Nazarov’s anticoncentration inequality

for Gaussian vectors over rectangles; see [22] for the proof.
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