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"Il semble que la perfection soit atteinte non quand

il n’y a plus rien à ajouter, mais quand il n’y a plus

rien à retrancher."

(It seems perfection is attained not when there is

no longer anything to add, but when there is no

longer anything to take away.)

– Antoine de Saint-Exupéry [1].

Here we discuss the use of penalized regressions for construct-

ing predictions in high-dimensional settings, particularly when

𝑝 > 𝑛. We first motivate the high-dimensional setting as arising

both from having a high-dimensional regressor set and from

constructing technical regressors from raw regressors. We then

discuss Lasso, which penalizes the size of the model by the sum

of the absolute value of its coefficients. We conclude with an

overview of other penalized regression methods.
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1: Recall, a technical regressor or con-
structed regressor is any variable ob-

tained as a transformation of a basic

regressor.

3.1 Linear Regression with

High-Dimensional Covariates

The Framework

We consider a regression model

𝑌 = 𝛽′𝑋 + 𝜖, 𝜖 ⊥ 𝑋,

where 𝛽′𝑋 is the population best linear predictor of 𝑌 using 𝑋 ,

or simply the population linear regression function. The vector

𝑋 = (𝑋𝑗)𝑝𝑗=1
is 𝑝-dimensional. That is, there are 𝑝 regressors,

and

𝑝 is large, possibly much larger than 𝑛.

This case where 𝑝 is large relative to the sample size is what we

call a high-dimensional setting. High-dimensional settings arise

when

▶ data have large dimensional features (i.e. many covariates

are available for use as regressors),

▶ we construct many technical regressors
1

from raw regres-

sors, or

▶ both.

Examples of datasets where many covariates are available and

potential corresponding exemplary applications include

▶ country characteristics in cross-country wealth analysis,

▶ housing characteristics in house pricing/appraisal analy-

sis,

▶ individual health information in electronic health records

and claims data, and

▶ product characteristics at the point of purchase in demand

analysis.

Another source of high-dimensionality is the use of constructed

features or regressors of the form

𝑋 = 𝑇(𝑊) = (𝑇1(𝑊), ..., 𝑇𝑝(𝑊))′,

where𝑊 denotes original raw regressors. As we discussed in

Chapter 1, the set of transformations 𝑇(𝑊) is sometimes called

the dictionary of transformations. Example transformations in-

clude polynomials, splines, interactions between variables, and

applying functions such as the logarithm or exponential. In

the wage analysis in Chapter 1, for example, we used quadratic

and cubic transformations of experience, as well as interactions
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2: This normalization is important

to discuss the concept of approxi-

mate sparsity.

(products) of these regressors with education and geographic

indicators. Recall that the main motivation for the use of con-

structed regressors is to build more flexible and potentially better
prediction rules.

The potential for improved prediction arises because we are

using prediction rules 𝛽′𝑋 = 𝛽′𝑇(𝑊) that are nonlinear in the

original raw regressors𝑊 and may thus capture more complex

patterns that exist in the data. Conveniently, the prediction rule

𝛽′𝑋 is still linear with respect to the parameters, 𝛽, and with re-

spect to the constructed regressors 𝑋 = 𝑇(𝑊), so inherits much

from the previous discussion of linear regression provided in

Chapter 1.

In summary, we have provided two motivations for using

high-dimensional regressors in prediction:

▶ The first motivation is that modern datasets have high-

dimensional features that can be used as regressors.

▶ The second motivation is that we can use nonlinear

transformations of features or raw regressors and their

interactions to form constructed regressors. Using

transformations allows us to better approximate the

best prediction rule – the conditional expectation of

the outcome given raw regressors.

Lasso

Recall that we are considering a regression model

𝑌 = 𝛽′𝑋 + 𝜖 =

𝑝∑
𝑗=1

𝛽 𝑗𝑋𝑗 + 𝜖, 𝜖 ⊥ 𝑋 (3.1.1)

where 𝑝 is possibly much larger than 𝑛.

We further assume that regressors are normalized,

E[𝑋2

𝑗 ] = 1,

to discuss theoretical properties.
2

However, the estimation

algorithms provided are stated without assuming this normal-

ization.

Classical linear regression or least squares fails in these high-

dimensional settings because it overfits in finite samples. Intu-

itively, overfitting refers to using patterns that are idiosyncratic

to a specific dataset and do not generalize out of sample. That is,
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3: Recall that we illustrated the

problem with overfitting in Section

1.2.

4: The notation ∝ reads as "propor-

tional to."

it corresponds to using a prediction rule that is overly complex

in that it uses patterns that help explain a given dataset, increas-

ing in-sample measures of fit, but are not present in different

data even if the data are drawn from the same population,

potentially harming out-of-sample prediction performance.

The potential for classical linear regression estimated with least

squares to overfit is especially apparent when 𝑝 ≥ 𝑛. In this case,

conventional least squares will perfectly fit the data regardless

of the value of 𝛽 as long as the covariate matrix is rank 𝑛.
3

We

therefore make some assumptions and modify the regression

method to deal with cases where 𝑝 is large.

An intuitive starting point is the assumption of approximate
sparsity. Under approximate sparsity, there is a small group of

regressors with relatively large coefficients whose use alone

suffices to approximate the BLP 𝛽′𝑋 well. The rest of the re-

gressors are assumed to have relatively small coefficients and

contribute little to the approximation of the BLP.

An example of approximate sparsity is captured by regression

coefficients of the form
4

𝛽 𝑗 ∝ 1/𝑗2, 𝑗 = 1, ..., 𝑝.

Here, the first few coefficients capture almost all the explanatory

power of the full vector of coefficients as shown in Figure 3.1.
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Figure 3.1: Example of regression

coefficients, 𝛽 𝑗 = 1/𝑗2 that satisfy

approximate sparsity.

Next, we define approximate sparsity formally.

Definition 3.1.1 Approximate sparsity: The sorted absolute
values of the coefficients decay quickly. Specifically, the j𝑡ℎ largest
coefficient (in absolute value) denoted by |𝛽 |(𝑗) obeys

|𝛽 |(𝑗) ≤ 𝐴𝑗−𝑎 , 𝑎 > 1/2, (3.1.2)
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5: A centered random variable 𝑈

has E[𝑈] = 0, and a centered vari-

able𝑈 in a sample has 𝔼𝑛[𝑈] = 0.

for each 𝑗, where the constants 𝑎 and 𝐴 do not depend on the sample
size 𝑛.

For estimation purposes, we have a random sample {(𝑌𝑖 , 𝑋𝑖)}𝑛𝑖=1
.

We seek to construct a good linear predictor �̂�′𝑋, which works

well when 𝑝/𝑛 is not small.

Before defining the Lasso problem, it is important to note that

we are treating all variables as centered and thus do not include

an intercept in the model.
5

In practice, this construction means

that, for raw variables𝑌∗ and𝑋∗, we start by defining demeaned

versions of these variables𝑌 = 𝑌∗−𝔼𝑛[𝑌∗] and𝑋 = 𝑋∗−𝔼𝑛[𝑋∗]
for use in estimation of model parameters. We note that the

centered model (3.1.1) is equivalent to starting with the model

𝑌∗ = 𝛼 + 𝛽′𝑋∗ + 𝜖 𝜖 ⊥ 𝑋∗

with intercept 𝛼 = E[𝑌∗] − 𝛽′E[𝑋∗]. For estimates �̂� obtained

by estimating (3.1.1), we can thus recover an estimate of 𝛼 as

�̂� = 𝔼𝑛[𝑌∗] − �̂�′𝔼𝑛[𝑋∗].

As mentioned earlier, we will further assume that regressors

are normalized, E[𝑋2

𝑗
] = 1. We do state the estimation algo-

rithms without assuming this normalization. The combination

of centering and normalization – standardization – is commonly

employed in practice and is done by default in many software

packages.

Lasso constructs �̂� as the solution of the following penalized

least squares problem:

min

𝑏∈ℝ𝑝

∑
𝑖

(𝑌𝑖 − 𝑏′𝑋𝑖)2 + 𝜆 ·
𝑝∑
𝑗=1

|𝑏 𝑗 |�̂� 𝑗 , (3.1.3)

which is called the Lasso regression problem. The first term

is 𝑛 times the sample mean squared error, and the second

term is called a penalty term. The penalty term introduces

a cost to the complexity of the prospective model where

complexity is captured by the sum of the products of the

absolute values of the coefficients 𝑏 𝑗 with the penalty loadings
�̂� 𝑗 all multiplied by the penalty level 𝜆. Rather than work with centered

variables, we could equivalently de-

fine (3.1.3) with an intercept where

the intercept does not enter the

penalty function. The important

thing to keep in mind is that it is

rarely appropriate to penalize the

intercept.

The penalty loadings are typically set as

�̂� 𝑗 =

√
𝔼𝑛[𝑋2

𝑗
].
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6: This overall shrinkage towards

zero relative to the unpenalized

problem is sometimes referred to as

shrinkage bias or regularization bias.

The use of this penalty ensures invariance of Lasso predictions

to rescaling 𝑋′
𝑗
. Note that many software packages implement

the Lasso with simple penalty loadings �̂� 𝑗 = 1. In such cases,

the use of standardized variables produces the same results as

using these penalty loadings.

As long as 𝜆 > 0, the introduction of the penalty term in (3.1.3)

leads to a prediction rule which is less complex than the rule that

would be obtained via solving the unpenalized least squares

problem. Specifically, the penalty term in the Lasso problem,∑𝑝

𝑗=1
|𝑏 𝑗 |�̂� 𝑗 , provides a measure of complexity of a regression

model in terms of the overall magnitude of the coefficients.

When 𝜆 is positive, minimizing the Lasso problem requires

trading off in-sample fit with this measure of complexity. As a

result, the overall magnitude of the estimated coefficients, as

measured by the penalty term, will be smaller than the overall

magnitude of the coefficients absent this penalty. That is, the

Lasso solution will have coefficients that are "shrunk" towards

0 relative to the unpenalized least squares problem.
6

One important benefit of introducing the penalty term is that it

helps guard against overfitting by introducing a cost to model

complexity. Intuitively, overfitting occurs as a model is made

increasingly complex in an effort to make improvements to

in-sample fit that are small relative to sampling error and could

thus correspond to idiosyncrasies of a specific finite sample.

The penalty term imposes a cost to complexity which help

keep increases to complexity that have small benefit in terms

of improving fit from being made. Through careful choice of

𝜆, we can theoretically guarantee that the Lasso predictor is

similar to the optimal predictor, and thus generalizable, even in

high-dimensional settings.

A second important feature of Lasso is that it imposes the

approximate sparsity condition on the estimated coefficients �̂�.

Approximate sparsity is produced because the penalty function

in (3.1.3) has a kink at zero which results in the marginal cost of

including regressor 𝑋𝑗 (𝜆�̂� 𝑗 > 0) always being positive when

𝜆 > 0 . Therefore, Lasso includes a regressor 𝑋𝑗 with non-zero

coefficient only if its marginal predictive ability is higher than

this marginal cost threshold. That is, Lasso does variable selection:

The Lasso solution drops any variable (equivalently sets the

variable’s coefficient to 0) whose marginal predictive benefit

does not exceed the marginal cost of inclusion. We illustrate

this variable selection property numerically in Example 3.1.1

below.

It is important to note that Lasso will not generally select the
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7: For example, consider a scenario

where variable 𝑋1 has coefficient

𝛽1 = 0 but is highly correlated to

variables 𝑋2 , ..., 𝑋𝑘 that have non-

zero coefficients. It is quite plau-

sible that the marginal predictive

benefit of including𝑋1 in the model

is very high when𝑋2 , ..., 𝑋𝑘 are not

in the model while the marginal

predictive benefit of any one of

𝑋2 , ..., 𝑋𝑘 is relatively low. In this

case, 𝑋1 may enter the Lasso so-

lution with a non-zero coefficient

while all of 𝑋2 , .., 𝑋𝑘 are excluded.

8: This inability to select exactly the

right regressors is not special to

Lasso but shared by all variable

selection procedures.

9: Recall that 𝑧𝑡 is such that

P((𝑁(0, 1) ≤ 𝑧𝑡) = 𝑡.

"right" set of variables. Lasso will tend to exclude variables

with small, but non-zero population coefficients. Lasso will also

tend to fail to select the right variables in settings where the

𝑋 variables are correlated.
7

That is, one should not conclude

that Lasso has selected exactly the variables with non-zero

coefficients in the population unless one can rule out variables

with small, but non-zero coefficients and ensure that variables

are all at most weakly correlated.
8

This failure does not mean

that the Lasso predictions are poor quality, but does mean that

care should be taken in interpreting the selected variables.

Example 3.1.1 (Simulation Example) Consider

𝑌 = 𝛽′𝑋 + 𝜖, 𝑋 ∼ 𝑁(0, 𝐼𝑝), 𝜖 ∼ 𝑁(0, 1),

with approximately sparse regression coefficients:

𝛽 𝑗 = 1/𝑗2, 𝑗 = 1, ..., 𝑝

and

𝑛 = 300, 𝑝 = 1000.

Figure 3.2 shows that �̂� is sparse and is close to 𝛽. We see that

Lasso sets most of regression coefficients to zero. It figures

out approximately the right set of regressors, including only

those with the two largest coefficients. Note that Lasso does

not, and in fact cannot, select the regressors with non-zero

coefficients in this example as all variables have non-zero

coefficients.
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Figure 3.2: The true coefficients

(black) vs. coefficients estimated by

Lasso (blue) in Example 3.1.1.

A crucial point for the two Lasso properties that we have

discussed is the choice of the penalization parameter 𝜆. A

theoretically valid choice is
9

𝜆 = 2 · 𝑐�̂�
√
𝑛𝑧

1−a/(2𝑝) (3.1.4)



3 Predictive Inference via Modern High-Dimensional Linear
Regression 73

10: Practical recommendations,

based on theory and that seem to

work well in practice, are to set

𝑐 = 1.1 and a = .05.

11: Cross-validation is a repeated

data-splitting method for choos-

ing penalty parameters for Lasso

and for selecting among predictive

models more generally. We outline

the basic idea of cross-validation in

Section 3.B.

where �̂� ≈ 𝜎 =
√

E[𝜖2] is obtained via an iteration method

defined in Appendix 3.A, 𝑐 > 1, and 1 − a is a confidence

level.
10

We can further simplify the choice using Feller’s tail

inequality:

𝑧
1−a/(2𝑝) ≤

√
2 log(2𝑝/a),

where the inequality becomes sharp as 𝑝 →∞.

This penalty level ensures that the Lasso predictor �̂�′𝑋 does

not overfit the data and delivers good predictive performance

under approximate sparsity ([2, 3]). Another good way to pick

the penalty level when building a model for prediction is by

cross-validation ([4]).
11

Quick Heuristics for Lasso Properties and Penalty

Choice
★

Here, we provide a sketch of the mathematics of the Lasso

estimator illustrating its variable selection properties and moti-

vating the choice of 𝜆 in (3.1.4).

Assume �̂� 𝑗 = 1 for simplicity. The 𝑗-th component �̂� 𝑗 of the

Lasso estimator �̂� is set to zero if the marginal predictive benefit

of changing �̂� 𝑗 away from zero is smaller than the marginal

increase in penalty:

�̂� 𝑗 = 0 if

����� 𝜕

𝜕�̂� 𝑗

∑
𝑖

(𝑌𝑖 − �̂�′𝑋𝑖)2
����� < 𝜆.

That is,

�̂� 𝑗 = 0 if | − �̂� 𝑗 | < 𝜆, �̂� 𝑗 = 2

∑
𝑖

(𝑌𝑖 − �̂�′𝑋𝑖)𝑋𝑗𝑖 .

We discuss more detailed heuristics for penalty level selection

in the appendix, but the rough idea is that the penalty should

dominate the noise 𝑆 𝑗 = 2

∑
𝑖(𝑌𝑖 − 𝛽′𝑋𝑖)𝑋𝑗𝑖 in the measurement

of the marginal predictive ability. By the high-dimensional

central limit theorem ([5]), we have that

(𝑆 𝑗)𝑝𝑗=1

a∼ 2

√
𝑛𝜎(Nj)𝑝𝑗=1

, N𝑗 ∼ 𝑁(0, 1).

Therefore, to guarantee that Lasso sets to zero any coefficient

whose actual value is zero, we would like to choose 𝜆 to domi-

nate

2

√
𝑛𝜎 max

𝑗=1,...,𝑝
|N𝑗 |
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12: Note that the estimates of the

large coefficients are nearly perfect

after OLS refitting of the model

selected by Lasso in this example.

with high probability, say 1 − a. Then by the union bound and

symmetry of centered normal variables,

P

(
max

𝑗=1,...,𝑝
|N𝑗 | > 𝑧

1−a/(2𝑝)
)
≤ 2

𝑝∑
𝑗=1

P

(
N𝑗 > 𝑧

1−a/(2𝑝)
)

= 2𝑝
(
1 − (1 − a/(2𝑝))

)
= a.

The union bound here is crude, but the bound is not very

loose. In particular, when the N𝑗’s are independent, the bound

becomes sharp as 𝑝 →∞. Finally, setting

𝜆 = 2𝜎
√
𝑛𝑧

1−a/(2𝑝)

we conclude that

P(max

𝑗
|𝑆 𝑗 | ≤ 𝜆) ≥ 1 − a,

up to a vanishing error. That is, this choice of 𝜆 guarantees that

variables with 𝛽 𝑗 = 0 are excluded from the model (have 𝛽 𝑗 = 0)

with high probability.

OLS Post-Lasso

We can use the Lasso-selected set of regressors, those regressors

whose Lasso coefficient estimates are non-zero, to refit the

model by least squares. This method is called "least squares

post Lasso" or simply Post-Lasso ([3]). Compared to Lasso,

Post-Lasso undoes the overall shrinkage toward zero relative

to unconstrained least squares from the estimated non-zero

coefficients, as we illustrate in Figure 3.1.5 below.
12

Removing

this shrinkage towards zero from the non-zero coefficients

sometimes delivers improvements in predictive performance.

Post-Lasso. We define the Post-Lasso

�̃� ∈ arg min

𝑏∈ℝ𝑝

∑
𝑖

(𝑌𝑖 − 𝑏′𝑋𝑖)2 such that

𝑏 𝑗 = 0 if �̂� 𝑗 = 0 for each 𝑗 ,

(3.1.5)

where �̂� is the Lasso coefficient estimator. The formal prop-

erties of the Post-Lasso estimator �̃� are similar to those of

Lasso �̂�; see Section 3.2.
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Figure 3.3: The true coefficients

(black) vs. coefficients estimated by

Post-Lasso (blue) in the Example

3.1.1. Post-Lasso tends to remove

regularization bias from the esti-

mated non-zero coefficients.

Remark 3.1.1 (Cross Validation and OLS Post-Lasso) Note

that, when using Post-Lasso, one should either use the theo-

retically justified penalty parameter ([3]) as outlined above or

cross-validation for the overall OLS Post-Lasso process. That

is, one should not apply cross-validation to the Lasso to find a

value for 𝜆 and then use this same value of 𝜆 with Post-Lasso.

Unsurprisingly, using a penalty parameter chosen to optimize

cross-validation performance for Lasso tends to lead to poor

empirical performance when applied to an entirely different

procedure, Post-Lasso.

3.2 Predictive Performance of Lasso and

Post-Lasso

The best linear prediction rule (out-of-sample) is 𝛽′𝑋 . We want

to understand the quality of the Lasso prediction rule, �̂�′𝑋.

That is,

▶ Does �̂�′𝑋 provide a good approximation to 𝛽′𝑋?

Recall that with Lasso, we are trying to estimate 𝑝 parameters

𝛽1, ..., 𝛽𝑝 , imposing approximate sparsity via penalization. Un-

der approximate sparsity, only a few, say 𝑠, parameters will

be "important." We can call 𝑠 the effective dimension. Lasso ap-

proximately figures out which parameters are important to

keep. Further, intuitively, to estimate each of the "important"

𝑠 parameters well, we need many observations for each such

parameter. This means that 𝑛/𝑠 must be large, or, equivalently

𝑠/𝑛 must be small. Using previous reasoning from least squares

theory, we might also conjecture that the key determinant of
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the rate at which Lasso approximates the best linear predictor

is

√
𝑠/𝑛. This conjecture is almost correct.

Theorem 3.2.1 Under approximate sparsity as defined in Definition
3.1.1, restricted isometry conditions stated below, choosing 𝜆 as in
(3.1.4), and other regularity conditions stated e.g. in [3, 6], with
probability approaching 1 − a as 𝑛 → ∞, the following bound
holds:√

E𝑋

[
(𝛽′𝑋 − �̂�′𝑋)2

]
≤ const ·

√
E[𝜖2]

√
𝑠 log(max{𝑝, 𝑛})

𝑛
,

where E𝑋 denotes expectation with respect to 𝑋, and the effective
dimension is

𝑠 = const · 𝐴1/𝑎 · 𝑛 1

2𝑎 ,

where constant 𝑎 is the speed of decay of the sorted coefficient values
in the approximate sparsity definition. Moreover, the number of
regressors selected by Lasso is bounded by

const · 𝑠

with probability approaching 1−a as 𝑛 →∞. The constants const

are different in different places and may depend on the distribution
of (𝑌, 𝑋) and on a.

Therefore, if 𝑠 log(max{𝑝, 𝑛})/𝑛 is small, Lasso and Post-Lasso

regression come close to the population regression function/best

linear predictor. Relative to our conjectured rate

√
𝑠/𝑛, there

is an additional factor

√
log(max{𝑝, 𝑛}) in the bound. This

factor captures the price of not knowing a priori which of the

𝑝 regressors are the 𝑠 important ones. Lasso approximately

finds these important predictors, but correspondingly suffers

a loss relative to a predictor estimated with knowledge of the

best 𝑠-dimensional model (“oracle estimator”). A theoretical

guarantee similar to Theorem 3.2.1 has been established for

cross-validated Lasso [4], though the bound contains additional

logarithmic factors.

Under approximate sparsity and with appropriate choice of

penalty parameters, Lasso and Post-Lasso will approximate the

best linear predictor well. Theoretically, they will not overfit the

data, and we can thus use the sample and adjusted 𝑅2
and𝑀𝑆𝐸

to assess out-of-sample predictive performance. Of course, it

is always a good idea to verify the out-of-sample predictive

performance by using sample splitting.
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Remark 3.2.1 (Exact Sparsity) It is helpful to consider the

exactly sparse case, in which there are only 𝑘 non-zero co-

efficients bounded by some constant and the rest of the

coefficients are exactly zero. In this case, the effective dimen-

sion is (up to constants) equal to the number of non-zero

coefficients, i.e.

𝑠 = const · 𝑘.

To see this, note that 𝛽 satisfies the approximate sparsity

condition with 𝐴 = const · 𝑘𝑎 for 𝑎 ≥ 1, since 𝛽 𝑗 ≤ const ≤
const · 𝑘𝑎/𝑗𝑎 for 𝑗 ≤ 𝑘 and 𝛽 𝑗 = 0 ≤ const · 𝑘𝑎/𝑗𝑎 for 𝑗 > 𝑘.

Then 𝑠 ≤ const · 𝑘𝑛1/2𝑎
, which yields the result as 𝑎 →∞.

On regularity conditions
★
. A sufficient condition under which

Theorem 3.2.1 can be established is the restricted isometry

condition:

Definition 3.2.1 (Restricted Isometry) Suppose that

sup

∥𝑎∥=1

𝑎′E[𝑋𝑋′]𝑎 ≤ 𝐶1 < ∞,

and the following conditions hold:

Uniformly in 𝑍 ⊂ 𝑋 : dim(𝑍) ≤ 𝐿 = 𝑠 log(𝑛),

sup

∥𝑎∥=1

|𝑎′(𝔼𝑛[𝑍𝑍′] − E[𝑍𝑍′])𝑎 | ≈ 0,

inf

∥𝑎∥=1

𝑎′E[𝑍𝑍′]𝑎 > 𝐶2,

where 𝐶1 and 𝐶2 are constants.

This condition says that "small groups" of regressors are not

collinear and are well-behaved. I.e. we have that subvectors 𝑍 of

𝑋 with dimension 𝐿 = 𝑠 log(𝑛) have empirical Gram matrices

𝔼𝑛[𝑍𝑍′] that are close to their population analogues E[𝑍𝑍′]
in the operator norm and have population covariance matrix

E[𝑍𝑍′] with eigenvalues bounded away from zero and from

above. This condition is simple and intuitive but is stronger than

necessary. Results similar to Theorem 3.2.1 have been shown

to hold under considerably weaker conditions. The condition

sup∥𝑎∥=1
|𝑎′(𝔼𝑛[𝑍𝑍′]−E[𝑍𝑍′])𝑎 | ≈ 0 has been demonstrated to

be valid under various more primitive conditions; see Appendix

3.C.
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3.3 A Helicopter Tour of Other Penalized

Regression Methods for Prediction

Instead of the Lasso penalty, other penalty schemes can be used,

leading to different regression estimators with different proper-

ties. These estimators are motivated by different structures for

the coefficients on the set of regressors in a high-dimensional

model. We consider three important settings where coefficient

are sparse, dense, or sparse+dense.

We have already seen that sparse coefficient vectors have a

small number of relatively large, non-zero coefficients with

the rest of the coefficients being close enough to zero to be

ignorable. A dense coefficient vector has the vast majority

or all coefficients non-zero and of comparable magnitude. A

sparse+dense structure has the vast majority of coefficients

being non-zero and of similar magnitude along with a small

number of relatively large coefficients. Figure 3.4 illustrates

each setting.

Throughout this section, we assume that regressors have been

centered and normalized to have second empirical moment

equal to 1. We thus ignore coefficient specific penalty parameters

like the �̂� 𝑗 in the Lasso problem (3.1.3).

We have already outlined Lasso regression, which performs

best in an approximately sparse setting. We next consider the

Ridge method, which performs best in the dense setting.

Ridge. The Ridge method estimates coefficients by penal-

ized least squares, where we minimize the sum of squared

prediction error plus the penalty term given by the sum of

the squared values of the coefficients times a penalty level

𝜆:

�̂�(𝜆) = arg min

𝑏∈ℝ𝑝

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑏′𝑋𝑖)2 + 𝜆
∑
𝑗

𝑏2

𝑗 .

Ridge balances the complexity of the model measured by the

sum of squared coefficients with the goodness of in-sample

fit. In contrast to Lasso, Ridge penalizes the large values of

coefficients much more aggressively and small values much

less aggressively – indeed, squaring big values makes them

even bigger and squaring small numbers makes them even

smaller.
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Figure 3.4: The Lasso penalty is best

suited for approximately sparse

models, and the Ridge penalty

for models with small dense co-

efficients. The Elastic Net can be

tuned to perform well with either

sparse or dense coefficients. The

Lava penalty is best suited for mod-

els with coefficients generated as

the sum of approximately sparse

coefficients and small dense coeffi-

cients.

Because of the latter property,

▶ Ridge does not set estimated coefficients to zero and

so it does not do variable selection.

▶ The Ridge predictor �̂�′𝑋 is especially well suited

for prediction in "dense" models, where the 𝛽 𝑗’s are

all small without necessarily being approximately

sparse.

▶ Ridge regression is also well suited when the matrix

E[𝑋𝑋′] is poorly behaved, as measured by the decay

of its eigenvalues to zero.

In the dense case, the Ridge predictor can easily outperform

the Lasso predictor.

Like Ridge, the Lasso predictor empirically seems to have rea-
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sonable prediction performance in the presence of ill-behaved

design matrices, although its theoretical properties are not as

well understood in this case.

Remark 3.3.1 (Theoretical Properties of the Ridge Procedure
★
)

For excellent analysis of Ridge properties, see [7], who present

the following bound for the fixed (conditional on) 𝑋1, ...𝑋𝑛
case holding with high probability:

𝔼𝑛
[
(�̂�′𝑋 − 𝛽′𝑋)2

]
≲

𝑝∑
𝑗=1

𝜆2𝜁 𝑗𝛾2

𝑗

(𝜁2

𝑗
+ 𝜆)2

+ E[𝜖2]
𝑛

𝑝∑
𝑗=1

(
𝜁2

𝑗

(𝜁 𝑗 + 𝜆)2

)
,

where (𝜁 𝑗)𝑝𝑗=1
are eigenvalues of 𝔼𝑛[𝑋𝑋′] and 𝛾𝑗 are such that

𝛽 =
∑𝑝

𝑗=1
𝛾𝑗𝑐 𝑗 with 𝑐𝑘 being the eigenvectors of 𝔼𝑛[𝑋𝑋′]. The

theoretically optimal penalty level can be chosen to minimize

the right hand side, though doing so is infeasible as the right

hand side depends on 𝛽. In practice, the penalty level is

generally chosen by cross-validation. An analogous result

holds for bounding E𝑋

[
(�̂�′𝑋 − 𝛽′𝑋)2

]
in the case of random

𝑋1, ...𝑋𝑛 ; see [7] for the statement.

The first component on the right hand side can be thought of

as squared bias, and the second component is mean squared

estimation error. Observe that when 𝜁 𝑗 = 1 and 𝜆 is bounded,

the second term is of order 𝑝/𝑛, which translates to the rate

of

√
𝑝/𝑛 after taking the square root. Having the second term

go to 0 thus requires

√
𝑝/𝑛 → 0. In contrast, 𝑝 can be larger

than 𝑛 and the second term can still vanish when eigenvalues

decay to zero. In this case, the effective dimension for a given

𝜆 is

𝑑(𝜆) =
𝑝∑
𝑗=1

𝜁2

𝑗

(𝜁 𝑗 + 𝜆)2
,

and the second term is of order 𝑑(𝜆)/𝑛. The ratio 𝑑(𝜆)/𝑛 then

determines the rate at which the Ridge predictor approximates

the optimal predictor if the square bias term is of smaller

order. Of course, it is hard to know that the square bias term is

of smaller order than the second term in practice. The squared

bias term will also not be of small order when there is a large

𝛾𝑗 associated with a large eigenvalue 𝜁 𝑗 .

Remark 3.3.2 (Connection to Principal Components
★
) Ridge

regression is closely related to principal components regression,

which regresses the outcome on the first 𝐾 principal compo-

nents of the predictor variables 𝑋𝑖 . Principal components are
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mutually orthogonal rotations of the original 𝑋𝑖’s that maxi-

mize the explained variance in 𝑋𝑖 . In the case where 𝑝 < 𝑛

and the centered predictor variables are linearly independent,

we define

𝑃𝑘𝑖 =
𝑐′
𝑘
𝑋𝑖
√
𝜁𝑘
,

where the 𝑐𝑘 are the eigenvectors and the 𝜁𝑘 are the corre-

sponding eigenvalues of 𝔼𝑛[𝑋𝑋′]. Under these conditions,

the ridge prediction can be expressed as

𝑋′𝑖 �̂� =

𝑝∑
𝑘=1

𝑃𝑘𝑖
𝜁𝑘

𝜁𝑘 + 𝜆
𝔼𝑛[𝑃𝑘𝑌].

In contrast, principal components regression using the first 𝐾

principal components produces predictions of the form

�̂�𝑖 =
𝐾∑
𝑘=1

𝑃𝑘𝑖 𝔼𝑛[𝑃𝑘𝑌].

Thus, ridge regression and principal components regres-

sion are closely connected. Unlike principal components

regression—which pre-selects a subset of principal compo-

nents—ridge regression weights all principal components

according to
𝜁𝑘

𝜁𝑘+𝜆 , reflecting the proportion of variance in 𝑋𝑖
explained by each component. This implicit use of principal

components in ridge regression is intriguing; indeed, we

can explicitly use principal components as input variables

in all penalized methods, as well as in the more advanced

techniques discussed in Chapter 8. We further explore the

use of Principal Component Analysis for feature extraction

in Chapter 10. For additional discussion, see [8] (pp. 64–67)

or the blog post Ridge vs PCA.

Ridge and Lasso have other useful modifications or hybrids

that can perform well in the sparse, dense or sparse + dense

settings. One popular modification is the Elastic Net [9] that

can perform well in either the sparse or the dense scenario with

appropriate tuning.

Elastic Net. The Elastic Net method estimates coefficients

by penalized least squares with the penalty given by a linear

combination of the Lasso and Ridge penalties:

�̂�(𝜆1,𝜆2) = arg min

𝑏∈ℝ𝑝

∑
𝑖

(𝑌𝑖 − 𝑏′𝑋𝑖)2 +𝜆1

∑
𝑗

𝑏2

𝑗 +𝜆2

∑
𝑗

|𝑏 𝑗 |.

https://stats.stackexchange.com/questions/81395/relationship-between-ridge-regression-and-pca-regression


3 Predictive Inference via Modern High-Dimensional Linear
Regression 82

We see that the penalty function has two penalty levels 𝜆1 and

𝜆2, which are chosen by cross-validation in practice.

▶ By selecting different values of penalty levels 𝜆1 and

𝜆2, we have more flexibility with Elastic Net for build-

ing a good prediction rule than with just Ridge or

Lasso.

▶ The Elastic Net performs variable selection unless we

completely shut down the Lasso penalty by setting

𝜆2 = 0.

▶ With proper tuning, Elastic Net works well in regres-

sion models where regression coefficients are either

approximately sparse or dense.

See [10] for some theoretical results on Elastic Net.

Another way to combine the Lasso and Ridge penalties is the

Lava method, which is intended to work well in sparse+dense

settings.

Lava. The Lava method ([11], [12]) estimates coefficients by

solving the penalized least squares problem:

�̂�(𝜆1,𝜆2) = arg min

𝑏:𝑏=𝛿+𝜉∈ℝ𝑝

∑
𝑖

(𝑌𝑖 − 𝑏′𝑋𝑖)2

+𝜆1

∑
𝑗

𝛿2

𝑗 + 𝜆2

∑
𝑗

|𝜉𝑗 |.

Here components of the parameter vector are split into a "dense

part" 𝛿 𝑗 and "sparse part" 𝜉𝑗 , where the 𝛿 𝑗 ’s are penalized like in

Ridge, and the 𝜉𝑗 ’s are penalized like in Lasso. The minimization

program automatically determines the best split into the dense

and sparse parts. There are two corresponding penalty levels 𝜆1

and 𝜆2, which can be chosen by cross-validation in practice.

▶ Compared to the Elastic Net, the Lava method pe-

nalizes large and small coefficients much less aggres-

sively – large coefficients are penalized like Lasso and

small coefficients like Ridge. Like Ridge, Lava does

not do variable selection.
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▶ Lava is designed to work well in

"sparse + dense"

regression models where there are several large coeffi-

cients and many small coefficients that do not vanish

quickly enough to satisfy approximately sparsity.

▶ With proper tuning that allows either 𝜆1 or 𝜆2 to

be set to large values, Lava can also work in either

"sparse" or "dense" models.

Theoretical guarantees for these methods are given in [11] and

[12]. Theoretically and practically, Lava can significantly outper-

form Lasso, Ridge and Elastic Net in "sparse+dense" models,

and, with appropriate tuning, has comparable performance to

Lasso in "sparse" models and to Ridge in "dense" models.

The code to produce the results and

specific details about simulation de-

sign are in the Notebooks 3.6.1.

Example 3.3.1 (High-Dimensional Linear Model Simulation

Example) Here, we consider using Lasso, Post-Lasso, Ridge,

Elastic Net, and Lava to predict an outcome𝑌 generated from

a high-dimensional linear model:

𝑌 = 𝛽′𝑋 + 𝜀.

We consider three different setting for 𝛽: a case where 𝛽 is

approximately sparse, a case where 𝛽 is dense, and a case

where 𝛽 is sparse + dense. In all cases, we consider 𝑛 = 100

observations, 𝑝 = 400 variables where the columns of 𝑋 are

independent, and generate 𝜀 as Gaussian noise. We choose

tuning parameters for Ridge, Elastic Net, and Lava via cross-

validation. For Lasso, we choose the penalty parameter 𝜆
using both cross-validation and the plug-in tuning from

(3.1.4). We report the (population) out-of-sample 𝑅2
in Table

3.1. We see that Lasso and Lava perform best in the sparse

setting, Ridge and Lava perform best in the dense setting, and

Lava performs best in the sparse+dense setting.

Sparse Dense Sparse+Dense

Lasso (Cross-Validation) 0.773 0.004 0.318

Lasso (Plug-in) 0.775 -0.030 0.329

Post-Lasso (Plug-in) 0.800 0.000 0.285

Ridge 0.182 0.162 0.116

Elastic Net 0.741 0.003 0.319

Lava 0.774 0.152 0.399

Table 3.1: Population Out-of-

Sample 𝑅2
in Simulation Experi-

ment.
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13: It is also common practice to

choose models purely on the ba-

sis of cross-validation. The Python

notebook for this example, Note-

book 3.6.2, follows this approach.

3.4 Choice of Regression Methods in

Practice

How should we select the appropriate penalized regression

method? The answer is simple if we are interested in building

the best prediction. We can split the data into training and

testing sets and simply choose the method that performs the

best on the test set. Rigorous theoretical guarantees for this

approach have been provided by [13].

We show an example of this approach in Notebook 3.6.2 which

illustrates the use of penalized regression methods for pre-

dicting log-wages using CPS 2015 data. We make use of three

specifications introduced in Chapter 1

▶ Basic Model: 𝑋 consists of raw regressors – sex, expe-

rience, education indicators, occupation and industry

indicators, and regional indicators.

▶ Flexible Model: 𝑋 consists of all raw regressors from

the basic model as well as transformations of the raw

regressors – polynomials in experience (experience
2
,

experience
3
, and experience

4
) and additional two-way

interactions of the polynomials in experience with all

other raw regressors except for sex.

▶ Extra Flexible Model:𝑋 consists of sex and all two way in-

teractions between experience, experience
2
, experience

3
,

experience
4
, and all other raw regressors except for sex.

We consider estimating our prediction rule with each set of

regressors using OLS. For the Flexible and Extra Flexible

models, we also consider the penalized approaches discussed in

this chapter. For each penalized method, we use cross-validation

to select tuning parameters. For Lasso and Post-Lasso, we also

consider the plug-in choice provided in (3.1.4).

In this exercise, we first split the data into a training and test

set.
13

We use the training data to estimate candidate models

based on our three specifications. For the penalized procedures,

this estimation on the training set includes cross-validation for

tuning parameter choice. We then evaluate the trained models

on the test data. We provide the out-of-sample 𝑅2
obtained

from applying the models estimated on the training data to

predict the test outcomes in Table 3.2.



3 Predictive Inference via Modern High-Dimensional Linear
Regression 85

Basic Flexible Extra Flexible

OLS 0.288 0.238 0.133

Lasso (Cross-validation) 0.279 0.272

Lasso (Plug-in) 0.265 0.264

Post-Lasso (Plug-in) 0.261 0.244

Ridge 0.263 0.253

Elastic Net 0.276 0.264

Lava 0.283 0.290

Table 3.2: Test Sample 𝑅2
in the

Wage Prediction Example.

In this example, we see that there is not much difference be-

tween just using simple OLS with the basic controls and the

penalized methods with the more expansive set of controls.

Importantly, we see that even though the simplest specifica-

tion works relatively well in this example, there is not much

loss from considering the broader set of controls. Considering

this broader set of controls can lead to large gains complex

settings with many raw variables or where nonlinearities are

important. One takeaway from this example is that it is often

useful to consider simple baseline models among the set of

models considered, especially in settings common in the social

sciences where data sets are relatively small and predictor sets

are only moderately complex. In addition to sometimes working

relatively well, as in this example, simple models are easy to

explain and understand.

To conclude, we might choose to use the model produced

by Lava in the Extra Flexible specification as our prediction

rule as it produces (marginally) the best performance on the

test data in this example, though there’s a strong argument

for preferring basic OLS as it is simple and highly competitive.

Rather than choose a single method, we could also use ensemble

methods to aggregate prediction methods to get boosts in

predictive performance. We describe these aggregation methods

in Chapter 8.

3.5 Notes

Lasso was introduced by Frank and Friedman [14], and its

geometric and computational properties were elaborated on

by Tibshirani [15], who also gave it its name. The first general

theoretical analysis of Lasso was done by Bickel, Ritov, and

Tsybakov [2]. Hastie, Tibshirani, and Wainwright [16] provides

a good textbook introduction.
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There are many variations on the basic Lasso theme, only some

of which we mentioned in this chapter. The properties of the

Post-Lasso estimator in approximately sparse models (without

assuming that Lasso perfectly selects the "right model") were

first established in [3]. The properties of Lasso and Post-Lasso

don’t hinge on the assumption of Gaussian or sub-Gaussian

errors, as proven in [6], though such assumptions are often

imposed. Fundamentally, the properties of these procedures

rely on a high-dimensional central limit theorem ([5]) that

allows Gaussian approximations to key average-like quantities.

While cross-validation has been frequently used to select the

penalty level, validity of this approach for Lasso was only

proven recently – [4]. The Lasso has been extended to clustered

dependence by [17] and to time series and many time series by

[18], with the corresponding package available at this Link.

There is a large literature on Ridge estimation, with the reference

[7] providing what seems to be the state of the art. The Lava

approach has been proposed and analyzed in [11] and [12]. [12]

also discusses applications to problems with latent confounding

and, for this reason, refers to Lava as the spectral deconfounder.

We discuss other approaches to dealing with latent confounding

in Chapter 12 and Chapter 13.

3.6 Notebooks

Notebook 3.6.1 (Penalized Regression) R Notebook on Penal-

ized Regressions and Python Notebook on Penalized Regres-

sions provide details of implementation of different penalized

regression methods and examine their performance for ap-

proximating regression functions in a simulation experiment.

The simulation experiment includes one case with approxi-

mate sparsity, one case with dense coefficients, and another

case with both approximately sparse and dense components.

Notebook 3.6.2 (Predicting Wages) R Notebook on ML for

Prediction of Wages and Python Notebook on ML for Predic-

tion of Wages provide details of implementation of different

penalized regression methods and examine their performance

for predicting log-wages using CPS 2015 data.

3.7 Exercises

https://github.com/QuantLet/LASSO_Time_Space
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_linear_penalized_regs.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_linear_penalized_regs.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_linear_penalized_regs.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_linear_penalized_regs.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_ml_for_wage_prediction.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/r_ml_for_wage_prediction.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_ml_for_wage_prediction.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM2/python_ml_for_wage_prediction.ipynb
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Exercise 3.7.1 (Lasso Optimization) Solve the Lasso opti-

mization problem analytically with only one regressor and

interpret the solution.

Exercise 3.7.2 (Lasso Simulation) Experiment with the R

Notebook on Penalized Regressions, trying out modifications

of the Monte-Carlo experiments. As examples, you might

change parameters that govern the speed of decay of coef-

ficients to zero, change the error distribution, or alter the

structure of dependence among the design variables. Try to

explain the results to a fellow student, linking explanations

to the theoretical properties of these methods.

Exercise 3.7.3 (Predicting Wages) Experiment with the R

Notebook on ML Prediction of Wages. Try to explain the

results to a fellow student, linking explanations to the theo-

retical properties of these methods.

3.A Additional Discussion and Results

Iterative Estimation of 𝜎

The plug-in choice of 𝜆 given in equation (3.1.4) requires an

estimate of 𝜎. We can estimate 𝜎 using the following iterative

method. Let 𝑋0
be a small set of regressors (a trivial choice

is just the intercept, but we may include, for example, the

five regressors that are most strongly correlated with the 𝑌𝑖’s).

Let �̂�0 be the least squares estimator of the coefficients on the

covariates associated with 𝑋0
, and define

�̂�0 :=

√
𝔼𝑛[(𝑌𝑖 − �̂�′

0
𝑋0

𝑖
)2].

Set 𝑘 = 0, and specify a small constant 𝜈 ≥ 0 as a tolerance

level and a constant 𝐾 > 1 as an upper bound on the number

of iterations: We find that 𝐾 = 1 works well in

practice.

1. Compute the Lasso estimator �̂� based on the penalty level

𝜆 given in equation (3.1.4) using �̂�𝑘 .

2. Set �̂�𝑘+1
=

√
𝔼𝑛[(𝑌𝑖 − �̂�′𝑋𝑖)2].

3. If |�̂�𝑘+1
− �̂�𝑘 | ⩽ 𝜈 or 𝑘 > 𝐾, stop; otherwise set 𝑘 ← 𝑘 + 1

and go to (1).
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We note that the plug-in choice of 𝜆 given in equation (3.1.4)

relies on assuming homoskedasticity of the BLP residuals, i.e.

𝜖 ⊥⊥ 𝑋. This independence implies that E[𝜖2𝑋2

𝑗
] = E[𝜖2]E[𝑋2

𝑗
].

With independent observations where we do not have 𝜖 ⊥⊥ 𝑋,

we should use penalty loadings �̂� 𝑗 =

√
𝔼𝑛[�̂�2𝑋2

𝑗
], where �̂�𝑖 ≈ 𝜖𝑖

can be estimated in a similar iterative manner as described above.

In this case, we would then take �̂� = 1 in formula (3.1.4) for 𝜆
(see [6] for more details).

We expect the homoskedastic formula for the penalty provided

in (3.1.4) will work well in many cases, especially when ran-

dom variables 𝜖, 𝑋𝑗 are expected to have fast decaying tail

probabilities. For example, when fourth moments of 𝜖, 𝑋𝑗 are

bounded by some constant factor of their second moments,

an application of the Cauchy-Schwarz inequality implies that

E[𝜖2𝑋2

𝑗
] ≤ const · E[𝜖2]E[𝑋2

𝑗
], which is, up to a constant, the

simplifying condition implied by homoskedasticity.

Some Lasso Heuristics via Convex Geometry
★

Assume �̂� 𝑗 = 1 for each 𝑗 for simplicity, which amounts to

normalizing regressors to have the second empirical moment

equal to 1. Consider

�̂� ∈ arg min

𝑏∈ℝ𝑝
𝑄(𝑏) + 𝜆

𝑛
∥𝑏∥1, (3.A.1)

where

𝑄(𝑏) = 𝔼𝑛[(𝑌𝑖 − 𝑏′𝑋𝑖)2].

The key quantity in the analysis of (3.A.1) is the score – the

gradient of 𝑄 at the true value:

𝑆 = −∇𝑄(𝛽0) = 2𝔼𝑛[𝑋𝜖].

The score 𝑆 is the effective "noise" in the problem that should

be dominated by the regularization. However, we would like to

make the regularization bias as small as possible. This reasoning

suggests choosing the smallest penalty level 𝜆 that is just large

enough to dominate the noise with high probability, say 1 − a,

which yields

𝜆 > 𝑐Λ, for Λ := 𝑛∥𝑆∥∞. (3.A.2)

Here, Λ is the maximal score scaled by 𝑛, and 𝑐 > 1 is a theo-

retical constant that guarantees that the score is dominated.
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It is useful to mention some simple heuristics for the principle

(3.A.2) which arise from considering the simplest case where

all of the regressors are irrelevant so that 𝛽 = 0. We want our

estimator to perform at a near-oracle level in all cases, including

this case, but here the oracle estimator 𝛽∗ sets 𝛽∗ = 𝛽 = 0.

We thus also want �̂� = 𝛽 = 0 in this case, at least with a

high probability, say 1 − a. From the subgradient optimality

conditions for (3.A.1), we must have

−𝑆 𝑗 + 𝜆/𝑛 > 0 and 𝑆 𝑗 + 𝜆/𝑛 > 0 for all 1 ≤ 𝑗 ≤ 𝑝 (3.A.3)

for the Lasso estimator for each coefficient to be exactly 0. We

can guarantee (3.A.3) holds by setting the penalty level 𝜆/𝑛
such that 𝜆 > 𝑛max1≤ 𝑗≤𝑝 |𝑆 𝑗 | = 𝑛∥𝑆∥∞ with probability at

least 1 − a, which is precisely what the rule (3.A.2) does.

Gaussian approximations to this score motivate the following

X-dependent penalty implementation.

Remark 3.A.1 (Refining Penalty Levels) An X-dependent

penalty level can be specified as follows:

𝜆 = 𝑐 · 2�̂�Λ(1 − a|{𝑋𝑖}𝑛𝑖=1
), (3.A.4)

where

Λ(1 − a|{𝑋𝑖}𝑛𝑖=1
)

= (1 − a) − quantile of 𝑛∥𝔼𝑛[𝑋𝑔/Ψ]∥∞ | {𝑋𝑖}𝑛𝑖=1
,

𝑔𝑖 are i.i.d. 𝑁(0, 1), and Ψ = diag(�̂� 𝑗)𝑝𝑗=1
. Λ(1 − a|{𝑋𝑖}𝑛𝑖=1

)
can be thus be easily approximated by simulation. The use

of normal errors 𝑔𝑖 could be motivated by assuming the

Gaussian errors 𝜖𝑖 in the model or by appealing to a high-

dimensional central limit theorem. We note that by the union

bound and Feller’s tail inequality,

Λ(1 − a|{𝑋𝑖}𝑛𝑖=1
) ≤
√
𝑛𝑧

1−a/(2𝑝)

≤
√

2𝑛 log(2𝑝/a).
(3.A.5)

Thus,

√
2𝑛 log(2𝑝/a) provides a simple upper bound on the

penalty level.

Refined penalty levels are important when components of 𝑋𝑖
are highly correlated, in which case the X-dependent penalty

will be much lower that the bounds given in 3.A.5. Using the

lower penalty level can offer both practical and theoretical

boosts in performance in such cases.
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Other Variations on Lasso

Here and below we assume that

�̂� 𝑗 = 1, 𝑗 = 1, ..., 𝑝

to simplify notation. A variant of Lasso, called the Square-
root Lasso estimator ([19],[20]), is defined as a solution to the

following program:

min

𝑏∈ℝ𝑝

√
𝔼𝑛[(𝑌 − 𝑏′𝑋)2] +

𝜆
𝑛
∥𝑏∥1. (3.A.6)

Analogously to Lasso, we may set the penalty level as

𝜆 = 𝑐 · Λ̃(1 − a|{𝑋𝑖}𝑛𝑖=1
), (3.A.7)

where 𝑐 > 1 and

Λ̃(1−a|{𝑋𝑖}𝑛𝑖=1
)

= (1 − a) − quantile of 𝑛∥𝔼𝑛[𝑋𝑔]∥∞/
√
𝔼𝑛[𝑔2] | {𝑋𝑖}𝑛𝑖=1

,

with 𝑔𝑖 ∼ 𝑁(0, 1) independent for 𝑖 = 1, . . . , 𝑛. As with Lasso,

there is also a simple asymptotic option for setting the penalty

level:

𝜆 = 𝑐 · 2
√
𝑛𝑧

1−a/(2𝑝). (3.A.8)

The main attractive feature of (3.A.6) is that the penalty level 𝜆
specified above is independent of the value 𝜎. This estimator

has statistical performance that is as good as the iterative or

cross-validated Lasso. Moreover, the estimator is a solution to a

highly tractable conic programming problem:

min

𝑡≥0,𝑏∈ℝ𝑝
𝑡 + 𝜆

𝑛
∥𝑏∥1 :

√
𝔼𝑛[(𝑌 − 𝑏′𝑋)2] ≤ 𝑡 , (3.A.9)

where the criterion function is linear in parameters 𝑡 and positive

and negative components of 𝑏, while the constraint can be

formulated with a second-order cone, informally known as the

"ice-cream cone."

There are several other estimators that make use of penalization

by the ℓ1-norm. A final important case is the Dantzig selector
estimator [21]. It also relies on ℓ1-regularization but exploits the

notion that the residuals should be nearly uncorrelated with

the covariates. The estimator is defined as a solution to

min

𝑏∈ℝ𝑝
∥𝑏∥1 : ∥𝔼𝑛[𝑋(𝑌 − 𝑏′𝑋)]∥∞ ≤ 𝜆/𝑛. (3.A.10)
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Again, one may set𝜆 = 𝜎Λ(1−a|{𝑋𝑖}𝑛𝑖=1
). Here, we focused our

discussion on Lasso but virtually all theoretical results carry

over to other ℓ1-regularized estimators including (3.A.6) and

(3.A.10). We also refer to [22] for a feasible Dantzig estimator

that combines the square-root Lasso method (3.A.9) with the

Dantzig method.

3.B Cross-Validation

Cross-validation is a common practical tool that provides a way

to choose tuning parameters such as the penalty level in Lasso.

The idea of cross-validation is to rely on repeated splitting

of the training data to estimate the out-of-sample predictive

performance.

Definition 3.B.1 (Cross-Validation in Words)

▶ We partition the data into𝐾 blocks called "folds." For example,
with 𝐾 = 5, we split the data into 5 non-overlapping blocks.

▶ Leave one block out. Fit a prediction rule on all the other
blocks. Predict the outcome observations in the left out block,
and record the empirical Mean Squared Prediction Error.
Repeat this for each block.

▶ Average the empirical Mean Squared Prediction Errors over
blocks.

▶ We do these steps for several or many values of the tuning
parameters and choose the value of the tuning parameter that
minimizes the Averaged Mean Squared Prediction Error.

We can also consider many different methods for constructing

prediction rules as well. For example, we could try Lasso with

many different values of the penalty parameter and Ridge with

many different values of the penalty parameter and choose the

tuning parameter and method (Lasso or Ridge) that minimizes

the cross-validated Mean Squared Prediction Error.

Definition 3.B.2 (Cross-Validation: Formal Description)

▶ Randomly partition the observation indices 1, ...., 𝑛 into 𝐾
folds 𝐵1, ..., 𝐵𝐾 .

▶ For each 𝑘 = 1, ..., 𝐾, fit a prediction rule denoted by
𝑓 [𝑘](·;𝜃), where 𝜃 denotes the tuning parameters such as
penalty levels and 𝑓 [𝑘] depends only on observations with
indices not in the fold 𝐵𝑘 .
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▶ For each 𝑘 = 1, ..., 𝐾, the empirical out-of-sample MSE for
the block 𝐵𝑘 is

MSE𝑘(𝜃) =
1

𝑚𝑘

∑
𝑖∈𝐵𝑘
(𝑌𝑖 − 𝑓 [𝑘](𝑋𝑖 ;𝜃))2,

where 𝑚𝑘 is the size of the block 𝐵𝑘 .
▶ Compute the cross-validated MSE as

CV-MSE(𝜃) = 1

𝐾

𝐾∑
𝑘=1

MSE𝑘(𝜃).

▶ Choose the tuning parameter �̂� as a minimizer of CV-MSE(𝜃).

Remark 3.B.1 (On Guarantees of Cross-Validated Predictors)

A common step people do in practice is to retrain the predictor

𝑓 (𝑋) on the entire data with the best tuning parameter �̂�
found by cross-validation. Theoretical properties of the result-

ing cross-validated predictor 𝑓 (𝑋) are only well understood

for some high-dimensional problems. E.g., see [4] for results

on Lasso with cross-validation.

Remark 3.B.2 (Guarantees for Pooled Cross-Validated Es-

timator) On the other hand, there are rigorous theoretical

guarantees for the pooled cross-validated predictor:

𝑓 (𝑋) = 1

𝐾

𝐾∑
𝑘=1

𝑓 [𝑘](𝑋; �̂�),

which are provided by [23] and [13] who establish that the

resulting prediction rule has optimal or near-optimal rates

for approximating the best predictor in a given class.

Note that the pooled procedure is different from the default CV

procedure implemented in many software packages and used

in many applications.

3.C Laws of Large Numbers for Large

Matrices
★

The following results are useful for justifying the restricted

isometry condition for empirical Gram matrices 𝔼𝑛[𝑋𝑋′].

Let 𝑠𝑛 , 𝑝𝑛 , 𝑘𝑛 be sequences of positive constants, ℓ𝑛 = log(𝑛),
and 𝐶 a fixed positive constant. Let (𝑋𝑖)𝑛𝑖=1

be iid. vectors.
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Denote by (𝑍𝑖)𝑛𝑖=1
corresponding subvectors.

Suppose that max∥𝑎∥=1
E[(𝑍′𝑎)2] ≤ 𝐶 for all 𝑍 ⊂ 𝑋 such that

dim(𝑍) ≤ 𝑠𝑛ℓ𝑛 and that one of the following holds:

(a) 𝑋𝑖 is a sub-Gaussian, namely

sup

∥𝑢∥≤1

P(|𝑋′𝑖𝑢 | > 𝑡) ≤ 2 exp(−𝑡2/𝑐2

2
)

for all 𝑡 ≥ 0, and 𝑠𝑛(log 𝑛) (log (max{𝑝𝑛 , 𝑛})) /𝑛 → 0;

(b) 𝑋𝑖 has bounded components, namely

max

𝑗
|𝑋𝑖 𝑗 | ≤ 𝑘𝑛

and 𝑘2

𝑛𝑠𝑛 log
2 𝑛 log(𝑠𝑛 log 𝑛) log (max{𝑝𝑛 , 𝑛}) /𝑛 → 0.

Then with probability 1 − 𝛿𝑛

max

𝑍⊂𝑋:dim(𝑍)≤𝑠𝑛ℓ𝑛
max

∥𝑎∥=1

|𝑎′ (𝔼𝑛 [𝑍𝑍′] − E [𝑍𝑍′)] 𝑎 | ≤ Δ𝑛 ,

where (𝛿𝑛 ,Δ𝑛) are decreasing sequences and (𝛿𝑛 ,Δ𝑛) → 0.

Under (a) the result follows from Theorem 3.2 in [24] and under

(b) the result follows from [25]. These references also imply

finite-sample characterization of error bounds (𝛿𝑛 ,Δ𝑛).

3.D A Sketch of the Lasso Guarantee

Under Exact Sparsity
★

Let us assume that the population BLP 𝛽0 satisfies exact sparsity,

i.e. only 𝑠 out of 𝑝 coefficients are non-zero. Denote with 𝐴 the

set of non-zero coefficients and with 𝐴𝑐 the complement of that

set. Consider the Lasso minimizing the objective �̂�(𝑏) + 𝜆
𝑛 ∥𝑏∥1

for 𝑄(𝑏) = 𝔼𝑛[(𝑌 − 𝑏′𝑋)2]. From the optomatlity conditions,

we have

�̂�(�̂�) − �̂�(𝛽0) ≤
𝜆
𝑛
(∥𝛽0∥1 − ∥�̂�∥1). (3.D.1)

Let 𝜈 := �̂� − 𝛽0. Since the objective �̂�(𝛽) is convex in 𝛽, we have

by an application of the Cauchy-Schwarz inequality that

�̂�(�̂�) − �̂�(𝛽0) ≥ ∇�̂�(𝛽0)′𝜈 = −𝑆′𝜈 ≥ −∥𝑆∥∞∥𝜈∥1

for 𝑆 = −∇𝑄(𝛽0) = 2𝔼𝑛[𝑋𝜖].
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14: The High-Dimensional CLT

bounds tell us that if we set 𝜆 ≈√
𝑛 log(max{𝑝/a, 𝑛}), then this in-

equality holds with probability 1 −
a.

15: Verify this as a reading exercise.

16: See, e.g. Lemma 10 in [26] for

an argument based on [2].

We will assume that 𝜆 is chosen such that we have
𝜆
𝑛 ≥ 2∥𝑆∥∞

with probability 1−a.
14

We focus then on the good event where

the above inequality is satisfied. Then we can combine the above

two inequalities:

𝜆
𝑛
(∥𝛽0∥1 − ∥�̂�∥1) ≥ −∥𝑆∥∞∥𝜈∥1 ≥ −

𝜆
2𝑛
∥𝜈∥1.

Hence with with high probability,

�̂� − 𝛽0 ∈ 𝑅𝐶 = {𝜈 : ∥𝛽0 + 𝜈∥1 ≤ ∥𝛽0∥1 + ∥𝜈∥1/2}.

Note also that 𝜈 ∈ 𝑅𝐶 implies
15

∥𝜈𝐴𝑐 ∥1 ≤ 3∥𝜈𝐴∥1 (3.D.2)

where 𝜈𝐴 denotes the entries from 𝜈 in 𝐴 and 𝜈𝐴𝑐 denotes the

entries of 𝜈 in 𝐴𝑐 . This inequality roughly states that the error

vector 𝜈 = �̂� − 𝛽0 is primarily supported on 𝐴.

We impose the following regularity condition holds with prob-

ability approaching 1:

0 < 𝐶1 ≤ min

𝜈∈𝑅𝐶\0

𝜈′𝐺𝜈

∥𝜈∥2 ≤ max

𝜈∈𝑅𝐶\0

𝜈′𝐺𝜈

∥𝜈∥2 ≤ 𝐶2 < ∞, (3.D.3)

for both the empirical Gram matrix 𝐺 = 𝔼𝑛𝑋𝑋
′
and population

Gram matrix 𝐺 = E𝑋𝑋′. This condition is in fact implied by

the Restricted Isometry Conditions stated in the main text.
16

Then, using the fact that �̂�(𝛽) is quadratic in 𝛽, we can invoke

the exact second order Taylor expansion:

�̂�(�̂�) − �̂�(𝛽0) = 𝑆′𝜈 + 𝜈′𝔼𝑛[𝑋𝑋′]𝜈 ≥ −∥𝑆∥∞∥𝜈∥1 + 𝐶1∥𝜈∥2
2
.

When combined with the upper bound from the optimality of

�̂� for the penalized empirical loss and the fact that
𝜆
𝑛 ≥ 2∥𝑆∥∞,

this expansion yields

𝜆
𝑛
∥𝜈∥1 ≥ �̂�(�̂�) − �̂�(𝛽0) ≥ −

𝜆
2𝑛
∥𝜈∥1 + 𝐶1∥𝜈∥2

2
.

The second crucial inequality that

∥𝜈∥2
2
≤ 3𝜆

2𝐶1𝑛
∥𝜈∥1 (3.D.4)

then follows.

Finally, note that for any vector 𝜈 that is primarily supported on
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𝐴, the ℓ2 and ℓ1 norms are within a factor ≈
√
𝑠 of each other:

∥𝜈∥1 = ∥𝜈𝐴∥1 + ∥𝜈𝐴𝑐 ∥1 ≤ 4∥𝜈𝐴∥1 ≤ 4

√
𝑠∥𝜈𝐴∥2 ≤ 4

√
𝑠∥𝜈∥2

where we used the norm inequality, that for an 𝑠-dimensional

vector 𝑣, we have ∥𝑣∥1 ≤
√
𝑠∥𝑣∥2. Thus, we can conclude

∥𝜈∥2 ≤
6𝜆
𝐶1𝑛

√
𝑠. (3.D.5)

Using the assumption that 𝜈′E[𝑋𝑋′]𝜈 ≤ 𝐶2∥𝜈∥2 for 𝜈 ∈ 𝑅𝐶,

we get the final bound:√
E𝑋[(𝑋′�̂� − 𝑋′𝛽0)2] =

√
𝜈′E[𝑋𝑋′]𝜈 ≤ 𝐶2∥𝜈∥2 ≤

6𝜆𝐶2

𝐶1𝑛

√
𝑠.
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