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“Let us divide them in halves, let us cast lots, that

one half of them may fall to my share, and the other

to yours; I will cure them without bloodletting and

sensible evacuation; but do you do as ye know [...].

We shall see how many funerals both of us shall

have.”

– Jan Baptist van Helmont (17th Century)

In this chapter we begin discussion of causal inference by

focusing on Randomized Control Trials (RCTs). In an RCT, units

are randomly divided into those that receive a treatment and

those that receive no treatment. Under randomization and other

assumptions, the difference in average outcomes between the

treated and untreated groups is an average treatment (causal)

effect (ATE). By considering pre-treatment covariates, we can

improve the precision of the ATE estimate, explore heterogeneity

across subgroups, or both. We describe methods for doing so

and apply them to several RCTs. We introduce causal diagrams

as a means of visualizing RCTs and their underlying causal

assumptions. We conclude by outlining some limitations of

RCTs.
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1: POs were introduced by Donal

Rubin [1], builing upon the earlier

work of R.A.Fisher and J. Neymann

in the 1920s.

2: For simplicity, here we focus on

binary treatments; the ideas are

similar formultivalued and contin-

uous treatments.

3: As an example, we could un-

cover individual treatment effects

if we had identical twins (for exam-

ple, a pair of cars) that could be put

in treatment and control groups.

2.1 Potential Outcomes Framework and

Average Treatment Effects

In this section, we discuss the potential outcomes (POs) frame-

work for analyzing causality and treatment effects.
1

We begin

by introducing the two latent (unobserved) variables

𝑌(1) and 𝑌(0).

They represent the potential or counterfactual random outcomes

for an observational unit when the unit is subject to treatment

(treatment state 𝑑 = 1) or no treatment (control or untreated

state 𝑑 = 0).
2

In an economic context, the treatment might be

a training program or a policy intervention, and the outcome

might be an individual’s wage or employment status. In what

follows, it is also useful to introduce the potential response or

structural function:

𝑑 ↦→ 𝑌(𝑑),

which maps the potential treatment state 𝑑 ∈ {0, 1} to the

random potential outcome 𝑌(𝑑).

The quantities 𝑌(1) and 𝑌(0) are "counterfactual" because they

can’t be simultaneously observed. That is, we generally do

not have identical replicas of the observational units that are

simultaneously subject to both treatment and control.

The individual treatment effect is

𝑌(1) − 𝑌(0).

This effect will vary across individuals. As mentioned above,

typically we observe only one of the two terms, and hence it is

generally infeasible to uncover the individual treatment effect.
3

However, we can hope to estimate averages and the distribution

of 𝑌(𝑑) at the population level to compute quantities such as

the average treatment effect (ATE):

𝛿 = E[𝑌(1) − 𝑌(0)] = E[𝑌(1)] − E[𝑌(0)].

Let 𝐷 denote the actual assigned treatment, a random variable,

which takes a value of 1 if the observational unit participated in

the treatment and 0 otherwise.

Assumption 2.1.1 (Consistency) We observe

𝑌 := 𝑌(𝐷).
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4: Assumptions 2.1.1 and 2.1.2 to-

gether constitute what is commonly

known as the Stable Unit-Treatment

Value Assumption (SUTVA); see,

e.g., Imbens and Rubin [2].

5: For example, if each individual

has two friends, we could define po-

tential outcomes with spillovers as

𝑌(𝑑0 , 𝑑1 , 𝑑2), where 𝑑0 represents

the individual’s treatment status,

𝑑1 denotes the treatment status of

friend 1, and 𝑑2 denotes that of

friend 2.

6: For further reading, see, among

many others, [3], [4], [5], [6], and

[7].

For example, suppose the treatment group (𝐷 = 1) consists of

individuals who completed a job training program, while the

control group (𝐷 = 0) comprises those who did not. According

to Assumption 2.1.1, an individual’s observed wage outcome

equals 𝑌(1) if she completed the program (𝐷 = 1) and equals

𝑌(0) if she did not (𝐷 = 0). Although this assumption might

seem almost tautological, it plays a crucial role by ruling out

hidden variations in treatment. In other words, it requires that

the treatment and control conditions are well defined and clearly

correspond to the observed treatment status, 𝐷.

Assumption 2.1.2 (No Interference) Potential outcomes for any
observational unit depend only on the treatment status of that unit
and not on the treatment status of any other unit.

Assumption 2.1.2 is implicitly embedded in our definition

of the potential outcomes, 𝑌(𝑑), which specify each unit’s

outcome under treatment state 𝑑.
4

This formulation rules out

scenarios in which the treatment administered to one unit

affects the outcome of another unit. For example, in social

networks, treating an individual might influence the outcomes

of all of that person’s friends. Some types of spillover effects can

be accommodated by expanding the treatment definition and

adjusting the potential outcomes accordingly,
5

but addressing

these extensions is beyond the scope of this book.
6

The following analytical example may help gain better under-

standing of the potential outcomes framework.

Example 2.1.1 [Analytical Example] Consider the following

model:

𝑌(𝑑) := 𝜂0 + 𝜂1𝑑,

𝐷 := 1(𝜈 > 0),
𝑌 := 𝜂0 + 𝜂1𝐷,

where (𝜂0, 𝜂1, 𝜈) are jointly normal stochastic variables. Here,

𝜈 represents factors that influence selection into the treatment

state. In this example E[𝑌(1)] = E[𝜂0+𝜂1], E[𝑌(0)] = E𝜂0, and

the ATE is 𝛿 = E𝜂1. Importantly, only 𝐷 and 𝑌 are observed.

Under Assumption 2.1.1, population data directly provide the

conditional averages

E[𝑌 | 𝐷 = 𝑑] = E[𝑌(𝑑) | 𝐷 = 𝑑], for 𝑑 ∈ {0, 1}.

The difference of the two averages gives us the average predictive



2 Causal Inference via Randomized Experiments 45

effect (APE) of treatment status on the outcome:

𝜋 = E[𝑌 | 𝐷 = 1] − E[𝑌 | 𝐷 = 0].

It measures the association of the treatment status with the

outcome.

While the APE is identified – meaning computable from the

population data – it may seem surprising (or not at all) that the

APE in general does not agree with the ATE 𝛿:

𝛿 ≠ 𝜋. (2.1.1)

The difference between the APE and ATE is generally said to

be due to selection bias. The meaning of selection bias is clari-

fied through the following example, and clarified theoretically

below.

Example 2.1.2 (Selection Bias in Observational Data) Suppose

we want to study the impact of smoking marĳuana on life

longevity. Suppose that smoking marĳuana has no causal

effect on life longevity:

𝑌 = 𝑌(0) = 𝑌(1),

so that

𝛿 = E[𝑌(1)] − E[𝑌(0)] = 0.

However, the observed smoking behavior, 𝐷, is not assigned

in an experimental study. Suppose that the behavior determin-

ing 𝐷 is associated with poor health choices such as drinking

alcohol, which are known to cause shorter life expectancy,

so that E[𝑌 | 𝐷 = 1] < E[𝑌 | 𝐷 = 0]. In this case, we have a

negative predictive effect:

𝜋 = E[𝑌 | 𝐷 = 1] − E[𝑌 | 𝐷 = 0] < 0 = 𝛿,

which differs from the true causal effect 𝛿 = 0.

To sum up, in the smoking example, the chosen "treatment"

variable𝐷 is potentially negatively associated with the potential

health outcome, inducing the selection bias – the difference

between the predictive effect and the causal effect.

Example 2.1.3 (Analytical Version of the Smoking Example)

To capture dependence between 𝑌(𝑑) and 𝜈 in the smoking

context analytically, we can go back to Example 2.1.1. Here

we have the case that that the TE is 𝜂1 = 0, and we choose
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variables 𝜂0 and 𝜈 to be negatively associated:

E[𝜂0𝜈] < 0.

The negative association between the 𝜂0 and 𝜈 then results in

the observed smoking status, 𝐷, being negatively associated

with 𝑌 = 𝑌(𝑑). Specifically, we have

E[𝑌 |𝐷 = 1] < E[𝑌 |𝐷 = 0].

We can verify this analytically or via simulation (a homework).

It is useful to emphasize the main reason for having selection

bias is that

E[𝑌(𝑑)|𝐷 = 1] ≠ E[𝑌(𝑑)]

whenever 𝐷 is not independent of 𝑌(𝑑). If 𝐷 and 𝑌(𝑑) were

independent,

E[𝑌(𝑑)|𝐷 = 1] = E[𝑌(𝑑)]

would hold since in this case 𝐷 is uninformative about the

potential outcome and drops out from the conditional expecta-

tion.

To sum up, the problem with observational studies like our con-

trived example is that the "treatment" variable 𝐷 is determined

by individual behaviors which may be linked to potential out-

comes. This linkage generates selection bias - the disagreement

between APE and ATE. There are many ways of addressing

selection bias, one of which is through an experiment, where

we randomly assign the treatment to the units.

Random Assignment/Randomized Controlled

Trials

A way to remove selection bias is through random assignment

of treatment.

Assumption 2.1.3 (Random Assignment/Exogeneity) Suppose
that treatment status is randomly assigned. Namely, 𝐷 is statisti-
cally independent of each potential outcome 𝑌(𝑑) for 𝑑 ∈ {0, 1},
which is denoted as

𝐷 ⊥⊥ 𝑌(𝑑)

and 0 < P(𝐷 = 1) < 1.
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7: Synonyms are experiments and

A/B tests.

8: Of course, RCTs must be cor-

rectly done to guarantee Assump-

tion 2.1.3. For example, RCTs where

experimental protocols are not fol-

lowed may suffer from selection

bias.

This assumption states that the treatment assignment mech-

anism is purely random, and ensures that there are units in

treatment and in control.

Example 2.1.4 (Analytical Example Continued) In the analyti-

cal example 2.1.1, Assumption 2.1.3 is satisfied if the stochastic

shock 𝜈 determining 𝐷 is independent of stochastic shocks

𝜂0 and 𝜂1 determining 𝑌(1) and 𝑌(0), i.e.

𝜈 ⊥⊥ (𝜂0, 𝜂1).

A key result is that selection bias is removed under random

assignment, which allows us to learn summaries of causal

effects.

Theorem 2.1.1 (Randomization Removes Selection Bias) Under
Assumption 2.1.3, the average outcome in treatment group 𝑑 recovers
the average potential outcome under the treatment status 𝑑:

E[𝑌 | 𝐷 = 𝑑] = E[𝑌(𝑑) | 𝐷 = 𝑑] = E[𝑌(𝑑)],

for each 𝑑 ∈ {0, 1}. Hence the average predictive effect and average
treatment effect coincide:

𝜋 := E[𝑌 | 𝐷 = 1] − E[𝑌 | 𝐷 = 0]
= E[𝑌(1)] − E[𝑌(0)] =: 𝛿.

Assumption 2.1.3 is often not plausible for observational data.

In a randomized controlled trial (RCT)
7

, the aim is to ensure the

plausibility of Assumption 2.1.3 by direct random assignment

of treatment 𝐷. That is, subjects are randomly assigned a treat-

ment state𝐷 by the experimenter without regard to any of their

characteristics. Because the random assignment of the treat-

ment is unrelated to all subject characteristics by construction,

well-executed RCTs guarantee that Assumption 2.1.3 is satisfied.

Because of this property, many consider RCTs as the gold stan-

dard in causal inference, and RCTs are routinely employed in a

variety of important settings.
8

Examples include evaluating the

efficacy of medical treatment, vaccinations, training programs,

marketing campaigns, and other kinds of interventions.

Example 2.1.5 (No Selection Bias in Experimental Data) Sup-

pose that in the smoking example (Example 2.1.2), we worked

with data where smoking or non-smoking was generated by

perfectly enforced random assignment. In this case, we would

have agreement between average predictive and treatment
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9: Indeed, we can regress 𝑌 on 𝐷

and 1 − 𝐷; that is, estimate the

model𝑌 = 𝜃1𝐷+𝜃0(1−𝐷)+𝑈.We

can then apply the inferential ma-

chinery developed in the previous

chapter.

effects: 𝜋 = 𝛿. While it is difficult to imagine a long-run

RCT where study participants could be forced to smoke or

not smoke marĳuana (we discuss such limitations as well

as ethical considerations in Section 2.4), RCTs are routinely

employed in a variety of other important settings.

Statistical Inference with Two Sample Means

Inference is based on the independent sample {(𝑌𝑖 , 𝐷𝑖)}𝑛𝑖=1

obtained from an RCT, where index 𝑖 denotes the observational

unit. We assume that each (𝑌𝑖 , 𝐷𝑖) has the same distribution

as (𝑌, 𝐷). Estimation of the two means 𝜃𝑑 = E[𝑌 | 𝐷 = 𝑑] for

𝑑 = 0 and 𝑑 = 1 can be done by considering two group means

𝜃̂𝑑 =
𝔼𝑛[𝑌1(𝐷 = 𝑑)]
𝔼𝑛[1(𝐷 = 𝑑)] .

The two means example can also be treated as a special case

of linear regression,
9

but we find it instructive to work out

the details directly for the two group means. We provide these

details in Section 2.A.

Under mild regularity conditions, we have that

√
𝑛

(
𝜃̂0 − 𝜃0

𝜃̂1 − 𝜃1

)
a∼ 𝑁(0, V),

where

V =

(
Var(𝑌 |𝐷=0)
𝑃(𝐷=0) 0

0
Var(𝑌 |𝐷=1)
𝑃(𝐷=1)

)
so that 𝛿̂ = 𝜃̂1 − 𝜃̂0 obeys

√
𝑛(𝛿̂ − 𝛿) a∼ 𝑁(0, V11 + V22).

To use this result in practice, variance components are usually

estimated using the plug-in principle, which amounts to using

the sample analogues of the expressions above.

Sometimes we are interested in relative effectiveness of treat-

ment effects (for example, vaccine efficiency):

𝑓 (𝜃) = (𝜃1 − 𝜃0)/𝜃0 = 𝛿/𝜃0.
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10: The approximation follows

from application of the first order

Taylor expansion and continuity of

the derivative ∇ 𝑓 at 𝜃.

Figure 2.1: Tozinameran (Pfizer-

BioNTech Covid-19 vaccine); Image

Source: Wikipedia / Arne Müseler

11: In this example, we don’t

need the underlying individual

data to evaluate the effectiveness

of the vaccine because the poten-

tial outcomes are Bernoulli random

variables with mean E[𝑌(𝑑)] and

variance Var(𝑌(𝑑)) = E[𝑌(𝑑)](1 −
E[𝑌(𝑑)]).

Relative effectiveness can be estimated by 𝛿̂/𝜃̂0 = 𝑓 (𝜃̂), where

𝜃̂ = {𝜃̂𝑑}𝑑∈{0,1} and 𝜃 = {𝜃𝑑}𝑑∈{0,1}, with approximate distri-

bution obtained using the delta method:

√
𝑛( 𝑓 (𝜃̂) − 𝑓 (𝜃)) ≈ 𝐺′

√
𝑛(𝜃̂ − 𝜃) a∼ 𝑁(0, 𝐺′V𝐺),

where 𝐺 = ∇ 𝑓 (𝜃), 𝜃̂ = (𝜃̂0, 𝜃̂1)′, 𝜃 = (𝜃0, 𝜃1).10 .

Pfizer/BioNTech Covid Vaccine RCT

Pfizer/BNTX was the first vaccine approved for emergency use

in the EU and US to reduce the risk of Covid-19 disease. See the

Food and Drug Administration (FDA) briefing for details about

the RCT and the summary data. Volunteers were randomly

assigned to receive either a treatment (2-dose vaccination) or a

placebo, without knowing which they received, and the doctors

making the diagnoses did not know whether a given volunteer

received a vaccination or not. In other words, the trial was a

double-blind randomized control trial. The results of the study

are presented in the following table. The Notebooks 2.6.1 contain the

analysis of the Pfizer-BioNTech

Covid-19 Vaccine RCTs.

Figure 2.2: The aggregate data from

the Pfizer RCT; source: FDA brief-

ing.

We see that the rate of Covid-19 infection was relatively low at

the time. Specifically, the treatment group saw 9 Covid-19 cases

per 19,965, while the control group saw 169 cases per 20,172.

The estimated average treatment effect is about

−792.7 cases per 100,000,

and the 95% confidence band is
11

[−922,−664].

Under Assumptions 2.1.3 and 2.2.1 the confidence band suggests

that the Covid-19 vaccine caused a reduction in the risk of

contracting Covid-19.

https://www.fda.gov/media/144245/download
https://www.fda.gov/media/144245/download
https://www.fda.gov/media/144245/download
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12: The analysis in the FDA table

is based on the inversion of exact

binomial tests, the Cornfield proce-

dure.

We also compute the Vaccine Efficacy metric, which according

to [8], refers to the following measure:

VE =
Risk for Unvaccinated - Risk for Vaccinated

Risk for Unvaccinated

.

It describes the relative reduction in risk caused by vaccination.

Estimating the VE is simple as we can plug-in the estimated

group means. We can compute standard errors using the delta

method or by simulation. We obtain that the overall vaccine

efficacy is 94.6%, replicating the results shown in Figure 2.2.

Our 95% confidence interval for VE, based on the normal

approximation, is

[90.9%, 98.2%],

which differs only slightly from the FDA briefing table.
12

Remark 2.1.1 We notice that the confidence intervals for the

VE for the two age groups of seniors are very wide, so to

increase precision we pool them together and calculate the

effectiveness of the vaccine for the two groups that are 65 or

older. The resulting VE estimate is 95% and the two-sided

confidence interval based on the normal approximation is

[82%, 106%]

A more refined approach is possible, based on the inversion

of exact binomial ratio of Cornfield [9], which we report in

Notebooks 2.6.1. This approach, using Vaccination RCT R

Notebook 2.6.1, yields a confidence interval of

[69%, 99%].

The reason is that the accumulated counts of binomials are too

few for the Gaussian approximations to provide a high-quality

approximation, so the exact binomial ratio test inversion

delivers a more accurate confidence interval.

2.2 Pre-treatment Covariates and

Heterogeneity

Sometimes we also have additional pre-treatment or pre-determined
covariates𝑊 . We might be interested in either using these co-

variates to estimate average effects more precisely or to describe

heterogeneity of the treatment effects. For example, we might
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be interested in the impact of a treatment across age or income

groups.

For this purpose, we consider conditional average treatment

effects (CATE):

𝛿(𝑊) = E[𝑌(1) | 𝑊] − E[𝑌(0) | 𝑊],

which compare the average potential outcomes conditional on

a set of covariates𝑊 .

We can directly learn the conditional predictive effects (CAPE),

𝜋(𝑊) = E[𝑌 | 𝐷 = 1,𝑊] − E[𝑌 | 𝐷 = 0,𝑊],

from population data. However, these CAPE will generally not

agree with the CATE. One assumption that will be sufficient

for the CAPE and CATE to agree is having treatment assigned

randomly and independently of covariates. As before, the use

of RCTs help ensure the plausibility of this assumption.

Assumption 2.2.1 (Random Assignment Independent of Co-

variates) Suppose that treatment status is randomly assigned.
Namely, 𝐷 is statistically independent of both the potential out-
comes and a set of pre-determined covariates:

𝐷 ⊥⊥ (𝑌(0), 𝑌(1),𝑊),

and 0 < P(𝐷 = 1) < 1.

This assumption spells out that, if we plan to use covariates

in the analysis, randomization has to be made with respect to

these covariates as well.

In practice, it is often tempting to use post-treatment covariates

in regression analysis, but the use of such variables runs the

danger of violating Assumption 2.2.1. In the extreme case,

conditioning on the post-treatment observed outcome 𝑌, we

find that 𝜋(𝑌) = 0, even when there is a treatment effect. In

a less extreme case, conditioning on post-treatment variables

related to the outcome can "control-away" part of the effect,

diminishing estimates.

A common scenario where accidentally using a post-treatment

covariate may occur is when researchers encounter missing

data from imperfect data collection in following-up with control

and treated units to collect demographic information. When we

drop observations with missing data, we implicitly condition
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on a post-treatment variable (missingness) which can cause

violations of Assumption 2.2.1.

The desire to assess randomization with respect to covariates

motivates the following diagnostic procedure. For random variables 𝐴 and 𝐵, 𝐴 ∼
𝐵 denotes that 𝐴 and 𝐵 have the

same distribution.

Testing Covariance Balance. The random assignment as-

sumption induces covariate balance. Namely, the distribu-

tion of covariates should be the same under both treatment

and control:

𝑊 |𝐷 = 1 ∼𝑊 |𝐷 = 0,

and, equivalently,

𝐷 |𝑊 ∼ 𝐷.

A useful implication is that 𝐷 is not predictable by𝑊 :

E[𝐷 | 𝑊] = E[𝐷].

This latter condition is testable using regression tools. It

amounts to saying that the 𝑅2
of a regression of 𝐷 on𝑊 is

0.

Under Assumption 2.2.1, Theorem 2.1.1 continues to hold, but

we now have a stronger result.

Theorem 2.2.1 (Randomization with Covariates) Under As-
sumption 2.2.1, the expected value of 𝑌 conditional on treatment
status 𝐷 = 𝑑 and covariates𝑊 coincides with the expected value
of potential outcome 𝑌(𝑑) conditional on covariates𝑊 :

E[𝑌 | 𝐷 = 𝑑,𝑊] = E[𝑌(𝑑) | 𝐷 = 𝑑,𝑊] = E[𝑌(𝑑)|𝑊],

for each 𝑑. Hence the conditional predictive and average treatment
effects agree:

𝜋(𝑊) = 𝛿(𝑊).

Regression and Statistical Inference for ATEs

Empirical researchers often base statistical inference on the

ATE using the classical additive linear regression model, where

covariates enter additively in the model. This approach has

some good practical properties and often empirically leads to

improvements in precision over the simple two-means approach,

though this precision improvement is not guaranteed. Another

approach that we will emphasize is the interactive regression
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13: See Section 2.B for details.

14: Theoretically, this is imple-

mented by redefining 𝑊 := 𝑊 −
E[𝑊]. In estimation, this is imple-

mented by redefining 𝑊𝑖 := 𝑊𝑖 −
𝔼𝑛[𝑊]. Recentering by empirical

means is asymptotically equivalent

to recentering by the true means.

This is true here but is not true more

generally. This can be verified using

the concept of Neyman orthogonal-

ity that we develop later.

approach, where de-meaned covariates are also interacted

with the base treatment. Including interactions of de-meaned

covariates with the treatment always improves precision, and it

also allows us to discover treatment effect heterogeneity.

Classical Additive Approach

We begin explaining the classical additive approach. Here, to

simplify the exposition, we make the strong assumption that

the conditional expectation function is exactly linear:

E[𝑌 | 𝐷,𝑊] = 𝐷𝛼 + 𝛽′𝑋, (2.2.1)

where 𝑋 = (1,𝑊) contains an intercept and pre-treatment

covariates𝑊 . This setup is clearly restrictive, but the statistical

inference result will be valid without this assumption.
13

Later

in the book, we will consider fully nonlinear models.

We assume that covariates are centered:
14

E[𝑊] = 0.

By Assumption 2.2.1, there is covariate balance:

E[𝑊 | 𝐷 = 1] = E[𝑊 | 𝐷 = 0].

Using centered covariates implies that

E[𝑌(0)] = E[E[𝑌 | 𝐷 = 0, 𝑋]] = 𝛽1

E[𝑌(1)] = E[E[𝑌 | 𝐷 = 1, 𝑋]] = 𝛽1 + 𝛼.

That is, the average outcome in the untreated state is 𝛽1, and

the average treatment effect 𝛿 = E[𝑌(1)] − E[𝑌(0)] equals 𝛼.

Equation (2.2.1) implies that

𝑌 = 𝐷𝛼 + 𝛽′𝑋 + 𝜖, 𝜖 ⊥ (𝐷, 𝑋), (2.2.2)

implying that 𝛼 coincides with the coefficient in the BLP of 𝑌

on 𝐷 and 𝑋.

In fact, even if we don’t assume the linearity (2.2.1), we still have

that 𝛼 = 𝛿. That is, the projection coefficient 𝛼 recovers the ATE

𝛿 without the linearity assumption as we detail in Section 2.B.

Furthermore the statistical inference result stated below will

hold without requiring linear conditional expectation functions

as it is simply a statement about inference on the BLP.
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15: Relative ATE is often called lift
in business applications.

16: Here𝑈 = 𝑌 − 𝛼𝐷 − 𝛽1 obeys

E[𝑈 | 𝐷 = 𝑑] = E[𝑌(𝑑) − 𝛼𝑑 − 𝛽1 | 𝐷 = 𝑑]
= E[𝑌(𝑑) − 𝛼𝑑 − 𝛽1] = 0,

invoking random assignment and

the definition of 𝛼 and 𝛽1.

We are interested in statistical inference on the ATE and Relative

ATE
15

𝛼 and 𝛼/𝛽1.

Under regularity conditions, application of the OLS theory

from Chapter 1 gives us( √
𝑛(𝛼̂ − 𝛼),

√
𝑛(𝛽̂1 − 𝛽1)

)′
a∼ 𝑁(0, V),

where covariance matrix V has components:

V11 =
E[𝜖2𝐷̃2]
(E[𝐷̃2])2

, V22 =
E[𝜖2

1̃
2]

(E[1̃2])2
, V12 = V21 =

E[𝜖2𝐷̃1̃]
E[1̃2]E[𝐷̃2]

,

where 𝐷̃ = 𝐷−E[𝐷] is the residual after partialling out 𝑋 from

𝐷 linearly and 1̃ := (1 − 𝐷) is the residual after partialling out

𝐷 and𝑊 from 1.

We also obtain the approximate normality for the Relative ATE

using the delta method:

√
𝑛(𝛼̂/𝛽̂1 − 𝛼/𝛽1) a∼ 𝑁(0, 𝐺′V𝐺),

where

𝐺 = [1/𝛽1,−𝛼/𝛽2

1
]′.

Improvement in Precision under Linearity

Now we explain the role of covariates in potentially delivering

improvements in precision of estimating the ATE. The under-

lying idea is that of "denoising." This improvement, however,

hinges on the linear model (2.2.1). In the next section, we will

obtain improvement without linearity assumptions.

We consider what happens when we do not include covariates

in the regression. In this case, the OLS estimator 𝛼̄ estimates

the projection coefficient 𝛼 in the BLP using (1, 𝐷) alone:
16

𝑌 = 𝛼𝐷 + 𝛽1 +𝑈, E[𝑈] = E[𝑈𝐷] = 0,

where the noise

𝑈 = 𝛽′(𝑋 − E[𝑋]) + 𝜖

contains the part of 𝑌 that is linearly predicted by 𝑋, 𝛽′(𝑋 −
E[𝑋]) = 𝛽′𝑋 − 𝛽1. We then have that 𝛼̄ obeys

√
𝑛(𝛼̄ − 𝛼) a∼ 𝑁(0, V̄11), V̄11 =

E[𝑈2𝐷̃2]
(E[𝐷̃2])2

.
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17: Verify this as a reading exercise.

18: We always use robust vari-

ance formulas throughout the book.

However, the default inferential al-

gorithms in R and Python often

report the classical Student’s for-

mulas as variances, which critically

rely on the linearity assumption.

19: In this interactive model, using

re-centering by empirical means is

not equivalent to using re-centering

true means. This requires adding

additional variance term to the con-

ventional variance output of least

squares, which is variance of CAPE

𝑋′
𝑖
𝛼.

Under the linear model (2.2.1), it follows that

V11 ≤ V̄11,

with the inequality being strict ("<") if Var(𝛽′𝑋) > 0.
17

That

is, under (2.2.1), using pre-determined covariates improves the

precision of estimating the ATE 𝛼.

However, this improvement theoretically hinges on the correct-

ness of the additive linear model. Statistical inference on the

ATE based on the the normal approximation provided above

remains valid without this assumption as long as robust stan-

dard errors are used.
18

However, the precision can be either

higher or lower than that of the classical two-sample approach

without covariates. That is, without (2.2.1), V11 and V̄11 are not

generally comparable.

Remark 2.2.1 While the inferential result we derived is robust

with respect to the linearity assumption on the CEF, the

improvement in precision itself is not guaranteed in general

and hinges on the validity of the linearity assumption.

The Interactive Approach: Always Improves

Precision and Discovers Heterogeneity

We can also consider estimation of CATE through the lens of an

interactive linear regression model, which interacts treatment

indicator 𝐷 with regressors 𝑋 constructed from original raw

regressors 𝑊 . Including these interactions respects the logic

of approximating the conditional expectation of 𝑌 given 𝐷

and raw regressors using linear functional forms. To simplify

exposition, we first assume that the interactive model is exactly

correct for the CEF:

E[𝑌 | 𝐷,𝑊] = 𝛼′𝑋𝐷 + 𝛽′𝑋. (2.2.3)

However, this approach works without this assumption.

As before, we assume

𝑋 = (1,𝑊 ′)′, E[𝑊] = 0,

which can be achieved in practice by recentering.
19

Here, we
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20: A technical treatment refers to

any variable obtained as a trans-

formation of the original treatment

variable.

recover CATE via

𝛿(𝑊) = E[𝑌(1) | 𝑊] − E[𝑌(0) | 𝑊]
= E[𝑌 | 𝐷 = 1,𝑊] − E[𝑌 | 𝐷 = 0,𝑊] = 𝛼′𝑋.

Using that E𝑊 = 0, the ATE is then

𝛿 = E[𝛿(𝑊)] = E[𝛼′𝑋] = 𝛼1,

where 𝛼1 is the first component of 𝛼. The function 𝛼′
2
𝑊 , where

𝛼2 is the vector all elements of 𝛼 excluding 𝛼1, therefore de-

scribes the deviation of CATE away from the ATE.

We can verify that 𝛼 is the coefficient of the linear projection

equation:

𝑌 = 𝛼′𝐷𝑋 + 𝛽′𝑋 + 𝜖, 𝜖 ⊥ (𝑋, 𝐷𝑋).

Therefore, we can treat

𝐷̄ := 𝐷𝑋

as a vector of technical treatments
20

and invoke the "partialling

out" approach for inference on components of 𝛼.

Remark 2.2.2 (Improvement in Precision Guarantee) Unlike

the previous approach, the "interactive" approach always

delivers improvements in precision for estimating 𝛿, even if

the linearity in (2.2.3) does not hold; this was demonstrated

by Lin [10] and Cytrynbaum [11].

Reemployment Bonus RCT

The Notebooks 2.6.2 explore the

use of covariates to improve preci-

sion and learn about heterogeneity

in a Reemployment Bonus RCT.

Here we re-analyze the Pennsylvania re-employment bonus

experiment [12], which was conducted in the 1980s by the U.S.

Department of Labor to test the incentive effects of alternative

compensation schemes for unemployment insurance (UI). In

these experiments, UI claimants were randomly assigned either

to a control group or one of five treatment groups. We focus

our discussion on treatment group 4. In the control group the

current rules of the UI applied. Individuals in the treatment

groups were offered a cash bonus if they found a job within some

pre-specified period of time (qualification period), provided

that the job was retained for a specified duration; see the Penn

Data Codebook for further details on the data.

We consider the

http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/readme.b.txt
http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/readme.b.txt
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21: The standard errors are com-

puted using the standard Eicker-

Huber-White formula (HC0). Sur-

prisingly, IRA performs worse than

CL when we use the HC1 formula,

which multiplies the HC0 standard

errors by a factor of𝑛/(𝑛−𝑝), where

𝑝 is the total number of regressors

in the model. This adjustment is

heuristic and is motivated to cap-

ture the effect of overfitting, assum-

ing a homoscedastic model.

22: See the Reemployment Bonus

RCT Notebooks 2.6.2 for the results

from the balance check.

▶ classical 2-sample approach, no adjustment (CL)

▶ classical linear regression adjustment (CRA)

▶ interactive regression adjustment (IRA)

▶ interactive regression adjustment with double lasso (par-

tialling out by lasso) (IRA-DL)

We use the last approach in the spirit of exploration and ex-

perimentation. We describe the last approach and establish its

validity in Chapter 4.

Estimates of the ATE on (log) unemployment duration and

corresponding estimated standard errors are given in Table

2.1.

CL CRA IRA IRA-DL

Estimate -0.0855 -0.0797 -0.0755 -0.0789

Std. Error 0.0359 0.0356 0.0356 0.0356

Table 2.1: Estimates of the ATE of

the reemployment bonus on log

unemployment duration..

The different estimators deliver fairly similar point estimates

suggesting that treatment group 4 experiences an average de-

crease in unemployment duration of around 8%. The three

regression estimators deliver estimates that are slightly more

precise (have lower standard errors) than the simple difference

in means estimator.
21

We also see that the regression estimators offer slightly lower

estimates of the ATE than the difference in means estimator.

These differences likely occur due to minor imbalances in the

treatment allocation: People older than 54 tended to receive the

treatment more than other groups of qualified UI claimants

during the later period of the experiment. Loosely speaking,

the regression estimators try to correct for this imbalance by

"partialling out" the effect of this oversampling
22

and averaging

over differences net of these "imbalancing" effects. We will

explain how regression adjustment corrects for imbalances in

Chapter 5.

2.3 Drawing RCTs via Causal Diagrams

RCTs can be represented using causal diagrams, which clearly

display the assumptions underlying our treatment effect model.

Causal diagrams were first introduced by Sewall Wright in the

1920s ([13], [14]) and later formalized by Judea Pearl and James

M. Robins ([15], [16]).



2 Causal Inference via Randomized Experiments 58

In these diagrams, nodes represent random variables, and

arrows indicate causal effects (and related statistical depen-

dencies). In our RCT setup, the assigned treatment variable 𝐷

causally affects the outcome variable 𝑌, while pre-treatment

variables𝑊 also affect𝑌 but do not influence𝐷. The missing ar-

row between𝐷 and𝑊 encodes their statistical independence.

𝐷 𝑌

𝑊
Figure 2.3: Causal Diagram for an

RCT

Figure 2.4 extends this diagram by including potential outcomes

as nodes.

𝐷 𝑑 𝑌(𝑑)

𝑊
Figure 2.4: Causal Diagram for the

RCT Research Design

In Figure 2.4, the potential outcomes 𝑌(𝑑) are represented as a

single node influenced by𝑊 (indicated by the arrow from𝑊 to

𝑌(𝑑)). The absence of an arrow from𝐷 to𝑌(𝑑) indicates that the

treatment assignment is independent of the potential outcomes.

The arrow from the deterministic node 𝑑 to 𝑌(𝑑) captures the

causal dependency inherent in the potential outcome process.

Together, the process 𝑑 ↦→ 𝑌(𝑑) and the treatment assignment

𝐷 determine the realized outcome via 𝑌 := 𝑌(𝐷).

We further develop these concepts and employ causal diagrams

as a formal tool in Chapters Chapter 7 and Chapter 11.

2.4 The Limitations of RCTs

We outline key limitations of RCTs. First, we discuss identifi-

cation threats by examining settings in which the Stable Unit

Treatment Value Assumption (SUTVA) may fail, and the result-

ing implications for inference. We then address ethical, practical,

and generalizability concerns.
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23: Because SUTVA does not hold

in the vaccination context, it is cus-

tomary to use relative measures

of impact like "vaccine efficiency"

because they may be a somewhat

more stable measure when general-

izing from "small" treated subpop-

ulations to a "large" treated popu-

lation.

Externalities, Stability, and Equilibrium Effects

Rubin’s causal model relies on SUTVA (see Section 2.1), which

requires that one unit’s potential outcomes remain unaffected by

others’ treatment assignments [17]. However, there are settings

where this assumption may not hold.

For instance, in vaccine trials SUTVA holds when treatment and

control groups are "small" (infinitesimal) subpopulations of the

general population, allowing us to measure average vaccine

effects. If a large fraction of the population is vaccinated—thus

achieving herd immunity—the outcomes for the control group

may mirror those for the treated, and SUTVA fails.
23

In economics, such spillover effects are called externalities

or, in some cases, general equilibrium effects. For example, if

only a small subpopulation earns a college degree, general

equilibrium wage effects are minimal. Conversely, if many

obtain a degree, the equilibrium wage may adjust (reducing

the college wage premium). Similarly, in large-scale training

programs, an individual’s outcomes may depend on the number

of people trained for the same job.

Ethical, Practical, and Generalizability Concerns

Many RCTs are infeasible because implementing them can be

unethical. The 1978 Belmont Report ([18]) outlines ethical princi-

ples—"Respect for persons," "Beneficence," and "Justice"—that

govern research with human subjects and are enforced by in-

stitutional review boards. For example, a hypothetical RCT

assigning individuals to a smoking treatment would violate

"Beneficence" by causing harm, rendering such studies unethi-

cal.

RCTs may also encounter practical issues. They can be pro-

hibitively expensive when treatment costs, data collection, or

the necessary sample size for adequate power are high. Long-

term RCTs are particularly challenging due to attrition, and

randomizing access to a desirable treatment may be politically

unfeasible.

Even when successfully implemented, RCT findings may be

difficult to generalize. Local conditions or differences in imple-

mentation and intervention scale may limit the external validity

of the estimated average treatment effect.
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24: See, for example, ExP platform

at Microsoft and the WebLab plat-

form at Amazon.

2.5 Notes

RCTs have had a profound influence on business, economics,

and science. They are standard in testing drug efficacy and

various programs in labor and development economics. The

FDA adopted RCTs as the gold standard in the 1970s–80s, and

in the tech industry and marketing, RCTs are known as "A/B

Tests" and are widely used. Many major tech companies have

dedicated experimental platforms.
24

The expansion of experimentation in economics is linked to

the work of Richard Thaler (2017 Alfred Nobel Memorial Prize

in Economics), Abhĳit Banerjee, Esther Duflo, and Michael

Kremer (2019 Alfred Nobel Memorial Prize in Economics), John

List, among others.

For real examples of how RCTs are done and designed in prac-

tice, see, for example, the FDA registry of RCTs, the American

Economic Association’s registry of RCTs in economics, or the

The Poverty Action Lab.

We have presented basic ideas here. For a detailed analysis of

experimental design, please see Art Owen’s lecture notes ([19]).

For further reading on RCTs and causal analysis, refer to Imbens

and Rubin [2] and Duflo et al. [20].

2.6 Notebooks

Notebook 2.6.1 (Vaccination RCT) Vaccination RCT R Note-

book and Vaccination RCT Python Notebook contain the

analysis of vaccination examples.

Notebook 2.6.2 (Reemployment Bonus) Reemployment Bonus

RCT R Notebook and Reemployment Bonus RCT Python Note-

book explore the use of covariates to improve precision and

learn about heterogeneity in a Reemployment Bonus RCT.

2.7 Exercises

Exercise 2.7.1 (Selection Bias) Set-up a simulation experiment

that illustrates the contrived smoking example, following the

analytical example we’ve presented in the text. Illustrate the

difference between estimates obtained via an RCT (smoking

generated independently of potential outcomes) and an ob-

https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/
https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/
https://www.amazon.jobs/en/teams/aeo
https://www.amazon.jobs/en/teams/aeo
https://www.povertyactionlab.org/
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-vaccines.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-vaccines.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-vaccines.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-penn-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/r-rct-penn-precision-adj.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM1/python-rct-penn-precision-adj.ipynb
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servational study (smoking choice is correlated with potential

outcomes).

Exercise 2.7.2 (Vaccinations RCT) Study the notebook on

vaccinations RCTs. Try to replicate the results in the FDA

briefing table for age group 18-64 (exact replication is not

required). Explain your calculations.

Exercise 2.7.3 (Reemployment example) Study the notebook

on the reemployment example. Experiment with putting

even more flexible controls (e.g. use extra interactions of

some controls). Experiment with using HC0 vs. HC1 standard

errors. Report and explain your findings.

Exercise 2.7.4 (RCT Design) Skim over the information on

the Pfizer RCT design briefing. Write down one paragraph

summarizing the study design.

Exercise 2.7.5 (AEA RCT Registry) Skim over one of the

RCTs registered with AEA RCT Registry. Write down one

paragraph summarizing the study design.

Exercise 2.7.6 (Stability) Think of some RCTs where stability

is likely to hold and some RCTs where it likely does not.

2.A Approximate Distribution of the

Two Sample Means

To demonstrate the result in the text, we note that

𝜃̂𝑑 − 𝜃𝑑 =
𝔼𝑛[(𝑌(𝑑) − E𝑌(𝑑))1(𝐷 = 𝑑)]

𝔼𝑛[1(𝐷 = 𝑑)]

for 𝑑 ∈ {0, 1} because we can re-write the population group

average as

𝜃𝑑 = E[𝑌(𝑑)] = E[𝑌(𝑑)]𝔼𝑛[1(𝐷 = 𝑑)]
𝔼𝑛[1(𝐷 = 𝑑)] .

Hence, for each 𝑑 ∈ {0, 1},

√
𝑛(𝜃̂𝑑 − 𝜃𝑑) =

√
𝑛
𝔼𝑛[(𝑌(𝑑) − E𝑌(𝑑))1(𝐷 = 𝑑)]

𝔼𝑛[1(𝐷 = 𝑑)] .

https://www.fda.gov/media/144245/download
https://www.socialscienceregistry.org/
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25: Why? Hint: Use the law of iter-

ated expectations.

By the law of large numbers, 𝔼𝑛[1(𝐷 = 𝑑)] ≈ P(𝐷 = 𝑑); so we

have the approximation

√
𝑛{𝜃̂𝑑 − 𝜃𝑑}𝑑∈{0,1} ≈

√
𝑛
𝔼𝑛[(𝑌(𝑑) − E𝑌(𝑑))1(𝐷 = 𝑑)]

P(𝐷 = 𝑑) .

Note that the terms being averaged are

(𝑌𝑖(𝑑) − E[𝑌(𝑑)])1(𝐷𝑖 = 𝑑)
P(𝐷 = 𝑑) .

These terms have zero mean
25

and variance

E[(𝑌(𝑑) − E[𝑌(𝑑)])21(𝐷 = 𝑑)2]
P(𝐷 = 𝑑)2 =

Var(𝑌 | 1(𝐷 = 𝑑) = 1)
P(𝐷 = 𝑑) .

Also note the zero covariance:

E

[
(𝑌(1) − E[𝑌(1)])1(𝐷 = 1)

P(𝐷 = 1)
(𝑌(0) − E[𝑌(0)])1(𝐷 = 0)

P(𝐷 = 0)

]
= 0.

The application of the central limit theorem then yields the

claimed result.

2.B Statistical Properties of the Classical

Additive Approach
★

Here we analyze statistical inference on ATE using OLS and

adjusting for 𝑋 = (1,𝑊), without making the linearity assump-

tions we made in Section 2.2.

We consider the linear projection equation in the population:

𝑌 = 𝐷𝛼 + 𝑋′𝛽 + 𝜖, 𝜖 ⊥ (𝐷, 𝑋).

Here, we have that 𝐷 and 𝑋 = (1,𝑊) with E[𝑊] = 0, so that

𝛽′𝑋 = 𝛽1 + 𝛽′
2
𝑊 . Moreover, we have that 𝐷 ⊥ 𝑊 in the RCT

setting.

First, we’d like to verify that 𝛼 = E[𝑌(1)] − E[𝑌(0)] and 𝛽1 =

E[𝑌(0)]. For𝑈 := 𝛽′
2
𝑊 + 𝜖, we can write

𝑌 = 𝐷𝛼 + 𝛽1 +𝑈, 𝑈 ⊥ (1, 𝐷).

𝑈 ⊥ (1, 𝐷) holds because (1, 𝐷) ⊥ (𝑊, 𝜖) using that E[𝑊] = 0

and that 𝐷 ⊥ (𝑊, 𝜖). Therefore, 𝐷𝛼 + 𝛽1 coincides with the

population projection of 𝑌 onto (1, 𝐷). Hence, the projection

coefficients are the same as those obtained by the 2-sample
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26: Derive that 𝐷̃ = 𝐷−E[𝐷] from

Assumption 2.2.1.

27: To explain the derivation, note

that by partialling out 𝐷 and 𝑊

(recall that 𝑋 = (1,𝑊)) from 1 and

𝑌, we obtain

𝑌̃ = 𝛽11̃ + 𝜖; 1̃ := (1 − 𝐷).

The projection of 1 on 𝐷 and𝑊 is

given by 𝐷 since 𝐷 is binary and

we’ve assumed E[𝑊] = 0.

approach in the population. Therefore, 𝛽1 = E[𝑌(0)] and 𝛼 =

E[𝑌(1)] − E[𝑌(0)].

Second, we’d like to explain the details of the approximate

normality for the estimators of sample OLS coefficients 𝛽̂1. The

OLS theory of the first chapter implies that the OLS estimator

𝛼̂ obeys

√
𝑛(𝛼̂ − 𝛼) ≈

√
𝑛
𝔼𝑛[𝜖𝐷̃]
𝔼𝑛[𝐷̃2]

a∼ 𝑁(0, V11),

where 𝐷̃ = 𝐷−E[𝐷] is the residual after partialling out 𝑋 from

𝐷 linearly,
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and

V11 =
E[𝜖2𝐷̃2]
(E[𝐷̃2])2

.

Applying the same theory for 𝛽1 (the intercept coefficient),

yields
27

√
𝑛(𝛽̂1 − 𝛽1) ≈

√
𝑛
𝔼𝑛[𝜖1̃]
𝔼𝑛[1̃2]

a∼ 𝑁(0, V22),

where 1̃ := (1 −𝐷) is the residual after partialling out 𝐷 and 𝑋

from 1 and

V22 =
E[𝜖2

1̃
2]

(E[1̃2])2
.

We can also establish that the estimators are jointly approxi-

mately normal with covariance

V12 =
E[𝜖2𝐷̃1̃]

E[1̃2]E[𝐷̃2]
.
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