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"la nature ne fait jamais des sauts."

("nature never makes jumps.")

– Gottfried Leibniz [1].

In this chapter we discuss the Regression Discontinuity Design

(RDD). First, we introduce the basic idea of Regression Discon-

tinuity (RD). RDDs, when they exist, offer a highly credible way

to identify causal effects. However, leveraging RDDs without

covariates can fall short in practice. We show how modern

machine learning methods can be utilized for estimation in

RDDs with many covariates.
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17.1 Introduction

Like many other methods presented in the Advanced Top-

ics – instrumental variables, proxy controls, and difference-

in-differences – Regression Discontinuity Designs (RDDs) are

widely used in empirical work for measuring causal effects in

non-experimental settings where we cannot reliably measure

all confounders.

The basic RDD structure relies on a so-called running variable

or score which determines treatment: units whose score is above

a cutoff value are assigned to the treatment, while units with

score below the cutoff are assigned to control. We can always negate the running

variable or rename the treatment if

the relationship is the other way.

Examples are

reward of a scholarship if a student’s grade average exceeds a

certain threshold, bestowing of license to practice (say, medicine

or law) if one’s exam score exceeds a threshold, assignment

of a particular medical treatment if a biomarker is above a

cutoff, or getting social benefits if income is below some income

threshold.

The intuition for identification is that units marginally above

and below the threshold are comparable in terms of potential

outcomes, since they are the same in all ways except the assign-

ment to treatment, assuming of course that there are no other

discontinuities at the cutoff that would also render them differ-

ent in other ways. The latter continuity in potential outcomes

is the identifying assumption in RDDs. For example, suppose

we are interested in the causal effect of a student receiving a

scholarship on their future academic success. While the future

academic success of students with low grade averages is very

different from those with high averages, with or without a

scholarship, the students right at the cutoff essentially have the

same grade averages and are comparable. However, those just

above the cutoff have a scholarship and those just below do not.

We can thus compare those just above the cutoff to those just

below to learn the effect of having a scholarship on people at

the grade average cutoff.

We can also conceive of being above or below as random "luck,"

i.e., exogenous variation. E.g., getting just one more question

right on the exam might be viewed as a random event that has

nothing to do with the academic preparedness of the student –

anyone can happen to accidentally guess right on one question.

Viewing falling just to one side or the other of a cutoff as a purely

is an alternative approach to identification in RDDs based on

local randomization [2].
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Figure 17.1: In the sharp RDD, the

assignment of treatment depends

in a deterministic way on the un-

derlying running variable (or score

variable). Units with values of the

running variable below a cutoff are

not treated, while units above the

threshold are treated.

Figure 17.2: Identification and esti-

mation in the sharp RDD.

17.2 The Basic RDD Framework

Setting

In the sharp RDD the binary treatment variable 𝐷𝑖 ∈ {0, 1} for

individual 𝑖 is assigned on the basis of a running variable 𝑋𝑖 in

a deterministic ("sharp") way: 𝐷𝑖 = 1(𝑋𝑖 ≥ 𝑐), where 1 denotes

the indicator function and 𝑐 the cutoff value. That is, a unit is

treated (𝐷𝑖 = 1) if the value of the running variable is above

the threshold and in the control group (𝐷𝑖 = 0) otherwise.

For each individual, we observe additionally the outcome 𝑌𝑖
and potentially some pre-treatment variables 𝑍𝑖 ∈ ℝ𝑝

. The

observed data {𝑊𝑖}𝑛𝑖=1
= {(𝑌𝑖 , 𝑋𝑖 , 𝑍𝑖)}𝑛𝑖=1

are an i.i.d. sample of

size 𝑛 from the distribution of𝑊 = (𝑌, 𝑋, 𝑍). Note that we also

observe 𝐷𝑖 = 1(𝑋𝑖 ≥ 𝑐) for each individual because we know

the cutoff value 𝑐 and observe 𝑋𝑖 .

The parameter of interest in RDD is the ATE at the cutoff value

𝑐:

𝜏RD = E [𝑌𝑖(1) − 𝑌𝑖(0) | 𝑋𝑖 = 𝑐] .

This parameter can be identified under mild conditions in

the RDD context. Learning treatment effects away from the

RDD cutoff 𝑐 generally requires stronger conditions that allow

extrapolation.

We now state a simple sufficient condition under which 𝜏RD is

identified.

Assumption 17.2.1 (RDD Assumptions [3]) Suppose that i)
the conditional mean of the potential outcomes E [𝑌(𝑡) | 𝑋 = 𝑥]
for 𝑡 ∈ {0, 1} are continuous at the cutoff level 𝑐, ii) that the
density of the running variable, 𝑓𝑋 near the cutoff is positive –
𝑓𝑋(𝑐) > 0, and iii) there is no selection on gains local to the
cutoff: E[𝑌(1) − 𝑌(0)|𝐷, 𝑋 = 𝑥] = E[𝑌(1) − 𝑌(0)|𝑋 = 𝑥] for
𝑥 ∈ (𝑐 − 𝜖, 𝑐 + 𝜖) for some small 𝜖 > 0.

Under Assumption 17.2.1, we have

𝜏RD = lim

𝑥↓𝑐
E (𝑌𝑖 | 𝑋𝑖 = 𝑥) − lim

𝑥↑𝑐
E (𝑌𝑖 | 𝑋𝑖 = 𝑥)

where lim𝑥↓𝑐 and lim𝑥↑𝑐 denote the right-sided and left-sided

limit. Hence, the jump in E (𝑌𝑖 | 𝑋𝑖 = 𝑥), the conditional ex-

pectation function of the observed outcome, at the threshold

determines the causal effect of interest.
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Estimation

In sharp RDD, we are faced with the problem of estimating the

jump in the conditional mean functions at the cutoff value. As

we do not see treated and control observations exactly at the

cutoff, this problem boils down to estimation of the conditional

mean functions at points to the left and right of, but local to, the

cutoff value. In practice, we can estimate the conditional mean at

points local to the cutoff using conventional local nonparametric

methods. Local polynomial estimation has become the default

method for this local estimation task in RDD, and we therefore

focus on this method following the notation and exposition in

[4] closely.

Standard RDD Estimator: Without covariates, a weighted linear

regression of 𝑌𝑖 on 𝑋𝑖 is estimated locally around the cutoff to

estimate the parameter of interest:

�̂�base(ℎ) = 𝑒⊤
2

argmin

𝜃∈ℝ4

𝑛∑
𝑖=1

𝐾ℎ (𝑋𝑖 − 𝑐) (𝑌𝑖 − 𝜃′𝑉𝑖)2 .

Here, 𝐾 denotes a kernel function, By kernel function, we mean a

function that integrates to one and

is symmetric around 0. Common

examples are the uniform kernel,

𝐾(𝑥) = 1

2
1(−1 < 𝑥 < 1), and

the triangular or Bartlett kernel,

𝐾(𝑥) = (1 − |𝑥 |)1(−1 < 𝑥 < 1).

ℎ > 0 a bandwidth, 𝐾ℎ(𝑥) =
𝐾(𝑥/ℎ)/ℎ, 𝑉𝑖 = (1, 𝐷𝑖 , (𝑋𝑖 − 𝑐), 𝐷𝑖(𝑋𝑖 − 𝑐))⊤ a vector of ap-

propriate transformations of the running variable, and 𝑒2 =

(0, 1, 0, 0)⊤ the unit vector to select the coefficient of 𝐷𝑖 , which

is the target parameter.

Under standard conditions for local linear regression such as

continuity of the running variable and having bandwidth ℎ

approach zero at a suitable rate, the estimator �̂�base(ℎ) follows

an approximate normal distribution in large samples:

�̂�base (ℎ) 𝑎∼ 𝑁
(
𝜏 + ℎ2𝐵base , (𝑛ℎ)−1𝑉base

)
.

In the asymptotic distribution, the term ℎ2𝐵base with

𝐵base =
�̄�
2

(
𝜕2

𝑥𝔼 [𝑌𝑖 | 𝑋𝑖 = 𝑥]
��
𝑥=𝑐+
− 𝜕2

𝑥𝔼 [𝑌𝑖 | 𝑋𝑖 = 𝑥]
��
𝑥=𝑐−

)
represents bias, which is of the order ℎ2

. The variance

1

𝑛ℎ
𝑉base =

1

𝑛ℎ

�̄�

𝑓𝑋(𝑐)
(
𝕍

[
𝑌𝑖 | 𝑋𝑖 = 𝑐+

]
+ 𝕍 [𝑌𝑖 | 𝑋𝑖 = 𝑐−]

)
is of the order of (𝑛ℎ)−1

. The terms �̄� and �̄� in the bias and

variance expressions are constants related to the kernel defined

as

�̄� =
(
�̄�2

2
− �̄�1�̄�3

)
/
(
�̄�2�̄�0 − �̄�2

1

)
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for �̄�𝑗 =
∫ ∞

0

𝑣 𝑗𝐾(𝑣)𝑑𝑣 and

�̄� =

∫ ∞

0

(𝐾(𝑣) (�̄�1𝑣 − �̄�2))2 𝑑𝑣/
(
�̄�2�̄�0 − �̄�2

1

)
2

.

The choice of the bandwidth ℎ plays an important role in feasible

implementation of RDD estimation. MSE optimal choice of ℎ

involves equating squared bias and variance which renders

conventional confidence intervals invalid. Calonico et al. (2014)

[5] considers the use of MSE optimal bandwidths along with

bias correction and adjustment to standard errors to account for

estimating the bias. Their proposed methods are widely used

in practice and available in, e.g., R and python.

17.3 RDD with (Many) Covariates

Motivation for Using Covariates

For identification and estimation of the average treatment effect

at the cut-off value, no covariate information is required except

the running variable. Of course, additional covariates are avail-

able in many applications. As outlined in Cattaneo et al. (2023)

[6] provide an extensive discussion of the use of covariates in

RDDs. They note there are several reasons that using covariates

in RDD settings may be useful:

1. Efficiency and power improvements: As in randomized con-

trolled trials, using covariates can increase efficiency and

improve power; see, e.g., [7] and [8].

2. Auxiliary information: In RDD, the running variable deter-

mines the assignment of the treatment, and measurement

error in the running variable can distort the results. Addi-

tional covariates can help overcome measurement issues

and help deal with missing data problems.

3. Treatment effect heterogeneity: Covariates can be used to

explore heterogeneity in treatment effects. For example,

we can adapt methods from Chapter 14 and Chapter 15.

4. Other parameters of interest and extrapolation: Conventional

RDD without covariates only identifies treatment effects

at the cutoff value of the running variable. Making use

of additional covariates may allow extrapolation of the

treatment effects to other values of the runnign variable

away from the cutoff point and may also be useful for

identifying other causal parameters.

https://cran.r-project.org/web/packages/rdrobust/index.html
https://pypi.org/project/rdrobust/
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Low-Dimensional Covariates

There are several ways to adjust the RDD estimator to allow for

the presence of covariates. Calonico et al. (2019) [7] provide a

detailed analysis of the use of additional regressors in RDD in

a setting with relatively few covariates. A transparent approach

is to simply include the controls linearly within the objective

function defining the baseline local linear RDD estimator. That

is, we solve

�̂�lin(ℎ) =

𝑒⊤
2

argmin

(𝜃,𝛾)∈ℝ4+𝑝

𝑛∑
𝑖=1

𝐾ℎ (𝑋𝑖 − 𝑐) (𝑌𝑖 − 𝜃′𝑉𝑖 − 𝛾′𝑍𝑖)2
(17.3.1)

where 𝛾 are the coefficients on the 𝑝 dimensional vector of

pretreatment variables, 𝑍𝑖 .

It is clear that the estimator for 𝜃 can be equivalently written

as a RDD estimator with a covariate-adjusted outcome, �̃�𝑖 =

𝑌𝑖 − 𝑍⊤𝑖 �̂�ℎ and no covariates, where �̂�ℎ

�̂�ℎ = arg min

𝛾

𝑛∑
𝑖=1

𝐾ℎ (𝑋𝑖 − 𝑐)
(
�̌�𝑖 − 𝛾′�̌�𝑖

)
2

where �̌�𝑖 is the residual from lo-

cally partialling 𝑉 out from 𝑊

(with partialling out interpreted el-

ementwise if𝑊 is a vector). That is,

�̌�𝑖 =𝑊𝑖 − �̂�′
ℎ
𝑉𝑖 with

�̂�𝑖 = arg min

𝑏

𝑛∑
𝑖=1

𝐾ℎ (𝑋𝑖 − 𝑐)
(
𝑊𝑖 − 𝑏′�̌�𝑖

)
2

.

is the vector of linear

projection coefficients associated with 𝑍𝑖 obtained from solving

(17.3.1). That is,

�̂�lin(ℎ) = 𝑒⊤
2

argmin

(𝜃)∈ℝ4

𝑛∑
𝑖=1

𝐾ℎ (𝑋𝑖 − 𝑐)
(
�̃�𝑖 − 𝜃′𝑉𝑖

)
2

.

�̂�lin (ℎ) is consistent for the conditional average treatment effect

at 𝑋 = 𝑐, 𝜏𝑅𝐷 if the conditional distribution of the regressors

given the running variable varies smoothly around the cutoff.

As the estimator is just a local linear regression involving the

variables 𝑉 and 𝑍, this results essentially follows immediately

from properties of local regression which will hold under mild

smoothness conditions without requiring parametric functional

form restrictions.Specifically, if 𝔼 [𝑍𝑖 | 𝑋𝑖 = 𝑥] is twice continu-

ously differentiable around the cutoff, we will have

�̂�lin (ℎ) 𝑎∼ 𝑁
(
𝜏 + ℎ2𝐵base , (𝑛ℎ)−1𝑉lin

)
under regularity conditions similar to those for the estimator

without covariates. Interestingly, the bias term 𝐵base is the same

as in the case without including 𝑍𝑖 , but the variance term differs

with

𝑉lin =
�̄�

𝑓𝑋(𝑐)
(
𝕍

[
𝑌𝑖 − 𝑍⊤𝑖 𝛾0 | 𝑋𝑖 = 𝑐+

]
+𝕍

[
𝑌𝑖 − 𝑍⊤𝑖 𝛾0 | 𝑋𝑖 = 𝑐−

] )
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where 𝛾0 is a non-random vector corresponding to the probabil-

ity limit of �̂�ℎ (see also [8]). Unsurprisingly, the linear adjustment

estimator generally has smaller asymptotic variance than the

estimator without covariates; i.e. 𝑉lin ≤ 𝑉base . See [7] and [8]

for formal statement of the properties of 𝑉lin and discussion of

additional potential avenues for inclusion of covariates.

High-Dimensional Covariates

RDD with Lasso

In the case where many covariates are available, one straightfor-

ward option is to adopt the procedure from the low-dimensional

setting by including all variables linearly inside the local linear

regression and then using (local) Lasso regression to estimate

the parameters. This procedure has been analyzed by [9] and

[8]. Here, we follow [8] closely. The idea is that in a first step the

relevant variables are selected with a localized / weighted Lasso

regression. In the second step, we then run local linear RDD

estimation with the selected covariates from the first step.

Specifically, estimation proceeds as follows:

(Post)-Lasso Estimation in RDD

1. Using a preliminary bandwidth 𝑏 and a penalty parameter

𝜆, one solves a Lasso version of the local linear regression

defining the RDD estimator by adding a penalty term to

obtain preliminary estimates

(𝜃,�̃�)

= argmin

(𝜃,𝛾)∈ℝ4+𝑝

𝑛∑
𝑖=1

𝐾𝑏 (𝑋𝑖 − 𝑐)
(
𝑌𝑖 −𝑉⊤𝑖 𝜃 − (𝑍𝑖 − �̂�𝑍)

⊤ 𝛾
)

2

+ 𝜆
𝑝∑
𝑘=1

�̂�𝑘 |𝛾𝑘 | ,

where

�̂�𝑍 =
1

𝑛

𝑛∑
𝑖=1

𝑍𝑖𝐾𝑏 (𝑋𝑖 − 𝑐)

and

�̂�2

𝑘
=
𝑏

𝑛

𝑛∑
𝑖=1

(
𝐾𝑏 (𝑋𝑖 − 𝑐)𝑍(𝑘)𝑖 − 𝜇

(𝑘)
𝑍

)
2

are the local sample mean and variance, respectively, of the

covariates.
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2. Let 𝐽 =
{
𝑘 ∈ {1, . . . , 𝑝} : �̃�(𝑘) ≠ 0

}
denote the set of in-

dices of those covariates whose first step Lasso estimates

are non-zero. Using the variables in 𝐽 and a final bandwidth

ℎ, we compute our estimate of the treatment effect, 𝜏RD,

as �̂�𝐽(ℎ) exactly as in (17.3.1) where the set of covariates is

restricted to 𝐽.

[8] provide formal asymptotic properties post-Lasso estimator

�̂�𝐽(ℎ). As the estimator fundamentally relies on properties of the

Lasso, a key assumption is approximate sparsity – Definition

3.1.1 – of the coefficients on the controls 𝑍𝑖 .

To adapt approximate sparsity to the RDD setting, we de-

fine population regression coefficients, (𝜃0(𝐽 , ℎ), 𝛾0(𝐽 , ℎ)), and

corresponding residuals, 𝑟𝑖(𝐽 , ℎ), for any 𝐽 ⊂ {1, . . . , 𝑝} and

bandwidth ℎ:

(𝜃0(𝐽 , ℎ), 𝛾0(𝐽 , ℎ))

= argmin

(𝜃,𝛾)
E

[
𝐾ℎ (𝑋𝑖 − 𝑐)

(
𝑌𝑖 −𝑉⊤𝑖 𝜃 − 𝑍𝑖(𝐽)

⊤𝛾
)

2

]
,

𝑟𝑖(𝐽 , ℎ) = 𝑌𝑖 −𝑉⊤𝑖 𝜃0(𝐽 , ℎ) − 𝑍𝑖(𝐽)⊤𝛾0(𝐽 , ℎ).

Approximate sparsity then means that there exists a covariate

set 𝐽∗ ⊂ {1, . . . , 𝑝} that contains a "small" number 𝑠 ≡ |𝐽∗ | ≪ 𝑝

of regressors that captures the majority of the local predictive

power of the control variables 𝑍𝑖 . We formalize the requirement

that variables in 𝐽∗ capture the majority of the explanatory power

by requiring that the local correlation between the regression

errors 𝑟𝑖 (𝐽∗, ℎ) and each component of 𝑍𝑖 is small relative to

the estimation error:

max

𝑗=1,...,𝑝

���E [
𝐾ℎ (𝑋𝑖 − 𝑐)𝑍(𝑗)𝑖 𝑟𝑖 (𝐽

∗, ℎ)
] ��� = 𝑂

(√
log 𝑝

𝑛ℎ

)
. (17.3.2)

To ensure that properties of the estimator are not heavily in-

fluenced by the exact bandwidth choice, we further require

that (17.3.2) holds uniformly across an appropriate range of

bandwidths.

Under this local approximate sparsity condition and other

regularity conditions, [8] show that the post-Lasso estimator

�̂�𝐽(ℎ) has the same first-order asymptotic properties as an

infeasible estimator �̂�𝐽∗(ℎ) that uses only the subset of variables
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indexed by 𝐽∗. They then prove an asymptotic normality result

for �̂�𝐽∗(ℎ). Taken together, we then obtain that �̂�𝐽(ℎ) of 𝜏RD

satisfies

√
𝑛ℎ

(
�̂�𝐽 (ℎ) − 𝜏RD − ℎ2B𝑛

)
S𝑛

𝑑→N(0, 1),

with asymptotic bias and variance, respectively, given by For generic random vectors 𝐴

and 𝐵, 𝜇𝐴(𝑥) = E(𝐴 | 𝑋 =

𝑥), 𝜇𝐴𝐵(𝑥) = E (𝐴𝐵′ | 𝑋 = 𝑥) ,
𝜎2

𝐴𝐵
(𝑥) = 𝜇𝐴𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥)′.

Denote 𝜎2

𝐴
(𝑥) = 𝜎2

𝐴𝐴
(𝑥) for sim-

plicity. For a generic function 𝑔,

we also write 𝑔+ = lim𝑥↓𝑐 𝑔(𝑥) and

𝑔− = lim𝑥↑𝑐 𝑔(𝑥) for its right and

left limit at the RDD cutoff 𝑐, re-

spectively. Thus, 𝜏RD = 𝜇𝑌+ − 𝜇𝑌−.

B𝑛 ≈
𝐶B

2

(
𝜇′′
𝑌+
− 𝜇′′

𝑌−

)
and S2

𝑛 ≈
𝐶S

𝑓𝑋(𝑐)
(
𝜎2

𝑌+
+ 𝜎2

𝑌−

)
.

Here 𝐶B and 𝐶S are constants that depend on the kernel

function 𝐾 only, and 𝑌𝑖 = 𝑌𝑖 − 𝛾′𝑛𝑍𝑖 (𝐽𝑛)with

𝛾𝑛 =

(
𝜎2

𝑍(𝐽𝑛)− + 𝜎2

𝑍(𝐽𝑛)+

)−1
(
𝜎2

𝑌𝑍(𝐽𝑛)− + 𝜎2

𝑌𝑍(𝐽𝑛)+

)
,

is a covariate-adjusted version of the outcome variable that

uses a vector 𝛾𝑛 that can be thought of as an approximation of

𝛾0 (𝐽∗, ℎ) that is independent of the bandwidth. The estimator is

thus first-order asymptotically equivalent to a basic sharp RDD

estimator with the covariate-adjusted outcome �̃�𝑖 replacing the

original outcome 𝑌𝑖

RDD with generic ML Methods

As discussed above in the section on using low-dimensional

control variables, adjusting for a small number of controls by

including them linearly within the local linear RDD estimator is

asymptotically equivalent to running a local linear RDD regres-

sion with a modified outcome variable𝑌𝑖−𝑍′𝑖𝛾 for appropriately

defined 𝛾. Noack et al. (2023) [4] consider flexible inclusion of

control variables, allowing for high-dimensional settings, by

considering more general outcome variable adjustments of the

form 𝑌𝑖 − 𝜂0(𝑍𝑖) for potentially nonlinear function 𝜂0. That is,

they consider employing the conventional, covariate free RDD

estimator using the adjusted outcome 𝑌𝑖 − 𝜂0(𝑍𝑖) in place of

𝑌𝑖 .

Under the assumption that E[𝜂(𝑍)|𝑋 = 𝑥] is twice continuously

differentiable at points local to𝑋 = 𝑐 for a large class of functions

𝜂, different choices of 𝜂0 result in the same estimand for the
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adjusted RDD estimator because

𝜏𝑅𝐷 = lim

𝑥↓𝑐
E[𝑌 − 𝜂0(𝑍)|𝑋 = 𝑥]

− lim

𝑥↑𝑐
E[𝑌 − 𝜂0(𝑍)|𝑋 = 𝑥]

(17.3.3)

for any choice of 𝜂0 withing this class of functions under this

assumption. This assumption seems reasonable in settings

where treatment can be safely assumed to have no effect on

𝑍, such as scenarios where 𝑍 are pretreatment characteristics.

However, the choice of 𝜂0 impacts the performance of the RDD

estimator by altering the estimator’s asymptotic variance. [4]

show that the optimal choice of 𝜂0 with regard to the asymptotic

variance of the RDD estimator of the treatment effect is the

average of the conditional expectation functions of the outcome

given the running variables and covariates just to the right and

left of the cutoff value.

Given these observations,[4] provide an approach to allow for

flexible covariate adjustment in high-dimensional settings using

modern machine learning methods to estimate the optimal 𝜂0.

They consider a DML style estimator that employs cross-fitting

and consists of two steps.

General ML Estimation in RDD [4]

1. Randomly split the data {𝑊𝑖}𝑖∈1,...,𝑛 into𝑆 folds of (approx-

imately) equal size, collecting the corresponding indices

in the sets 𝐼𝑠 , for 𝑠 ∈ 1, ..., 𝑆. Let �̂�𝑠(𝑧) = �̂�
(
𝑧; {𝑊𝑖}𝑖∈𝐼𝑐𝑠

)
,

for 𝑠 ∈ 1, ..., 𝑆 and 𝐼𝑐𝑠 the set of indices of observations not

included in fold 𝑠, be the researcher’s preferred estimator

of 𝜂0 calculated using only data from outside the 𝑠th
fold.

2. Estimate 𝜏𝑅𝐷 by computing a local linear "no covariates"

RDD estimator that uses the adjusted outcome �̃�𝑖
(
�̂�𝑠(𝑖)

)
=

𝑌𝑖 − �̂�𝑠(𝑖) (𝑍𝑖) as the dependent variable, where 𝑠(𝑖) denotes

the fold that contains observation 𝑖. I.e. estimate 𝜏𝑅𝐷 as

�̂��̂�(ℎ) = 𝑒⊤
2

argmin

𝜃∈ℝ4

𝑛∑
𝑖=1

𝐾ℎ (𝑋𝑖 − 𝑐)
(
�̃�𝑖

(
�̂�𝑠(𝑖)

)
− 𝜃′𝑉𝑖

)
2

.

[4] establish that the estimator �̂��̂�(ℎ) is asymptotically equivalent

to the infeasible estimator

�̂��̄�(ℎ) = 𝑒⊤
2

argmin

𝜃∈ℝ4

𝑛∑
𝑖=1

𝐾ℎ (𝑋𝑖 − 𝑐)
(
�̃�𝑖

(
�̄�𝑠(𝑖)

)
− 𝜃′𝑉𝑖

)
2

,
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1: The weaker conditional mean-

independence of 𝑌(1) − 𝑌(0) and

1[𝑋 = 𝑐], given 𝑍, suffices, but is

perhaps harder to reason about.

where �̄� is a deterministic approximation of �̂� whose error

vanishes in large samples in some appropriate sense. It then

holds that

�̂��̂�(ℎ) 𝑎∼ 𝑁
(
𝜏 + ℎ2𝐵base , (𝑛ℎ)−1𝑉(�̄�)

)
The asymptotic variance in the above expression is minimized

if �̂� is consistent for 𝜂0, in the sense that �̄� = 𝜂0. However, the

distributional approximation is valid even if �̄� ≠ 𝜂0 because

(17.3.3) holds for (essentially) all adjustment functions, not

just the optimal one. In that sense, the procedure allows for

misspecification in the choice of model for �̂�. Moreover, 𝑉(�̄�) is
typically smaller than 𝑉base even under misspecification. Valid

confidence intervals can easily be constructed for 𝜏 by applying

standard methods developed for settings without covariates

to a data set with running variable 𝑋𝑖 and outcome �̃�𝑖
(
�̂�𝑠(𝑖)

)
ignoring sampling uncertainty about the estimated adjustment

function.

Heterogeneous Treatment Effects and Adjustments

for Heterogeneity

Our treatment of covariates thus far has been focused on using

covariates to increase efficiency of the average treatment effect

at the cutoff value 𝜏RD. Covariates can also help us understand

heterogeneity of treatment effects.

At a conceptual level, it is clear that we can repeat the setup in

Section 17.2 conditional on 𝑍 = 𝑧, We can also define GATEs at the cut-

off exactly as in Chapter ??. More

generally, one may adapt the ma-

terial on heterogeneous treatment

effects from Chapter 14 and Chap-

ter 15 to the RDD setting.

leading to the CATE at the
cutoff :

𝜏C−RD(𝑍) = E[𝑌(1) − 𝑌(0) | 𝑍, 𝑋 = 𝑐]
= lim

𝑥↓𝑐
𝑔(𝑥, 𝑍) − lim

𝑥↑𝑐
𝑔0(𝑥, 𝑍),

where 𝑔0(𝑋, 𝑍) = E[𝑌 | 𝑋, 𝑍].

A potentially policy-relevant summary of 𝜏C−RD(𝑍) is its aver-

age:

𝜏A−C−RD = E[𝜏C−RD(𝑍)] = E[E[𝑌(1) − 𝑌(0) | 𝑍, 𝑋 = 𝑐]].

For example, if we were to assume that 𝑍 accounts for all

treatment effect heterogeneity across values of the running

variable, that is,𝑌(1)−𝑌(0) ⊥⊥ 𝑋 | 𝑍,
1

then we would conclude

that 𝜏A−C−RD = E[𝑌(1) − 𝑌(0)] is the marginal ATE in the

population, not just at the cutoff. More generally, we can say
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2: There are a variety of ap-

proaches for estimating conditional

density functions using machine

learning methods. See, for exam-

ple, [10], [11], and [12].

that 𝜏A−C−RD controls for the heterogeneity modulated by 𝑍,

without requiring that 𝑍 accounts for all effect heterogeneity.

We can leverage DML to estimate 𝜏A−C−RD. For ℎ > 0, consider

a smoothed version of the same parameter:

�̃�ℎ =

∫ ∞

−∞
(41[𝑥 > 𝑐] − 2)𝐾ℎ(𝑥 − 𝑐)E[𝑔0(𝑥, 𝑍)]d𝑥.

Note that limℎ→0
�̃�ℎ = 𝜏A−C−RD under appropriate continuity

of 𝑔0(𝑥,𝑊) near 𝑥 = 𝑐 for almost every𝑊 . The quantity 𝜃0 = �̃�ℎ
is a simple linear summary of 𝑔0, similar to those we studied in

Chapter 14. We can apply DML to estimate 𝜃0 = �̃�ℎ using the

Neyman orthogonal score

𝜓(𝑊 ;𝜃, 𝜂) =
∫ ∞

−∞
(41[𝑥 > 𝑐] − 2)𝐾ℎ(𝑥 − 𝑐)𝑔(𝑥, 𝑍)d𝑥

+ (41[𝑥 > 𝑐] − 2)𝐾ℎ(𝑋 − 𝑐)
𝑓 (𝑋 | 𝑍) (𝑌 − 𝑔(𝑋, 𝑍)) − 𝜃,

where 𝜂 = (𝑔, 𝑓 ) are nuisance functions where the population

value of 𝑓 , 𝑓0, is the conditional density of 𝑋 given 𝑍. Imple-

menting DML in this setting then requires estimation of the

conditional expectation function 𝑔0 and the conditional density

function 𝑓0.
2

17.4 Empirical Example

In this section, we examine the effect of the antipoverty program

PROGRESA/Oportunidades on the consumption behavior of

families in Mexico in the early 2000s using RDD. Data for this

application are provided by [5]. We follow [4] in the presentation

of the results. The Notebooks 17.6.1 implement

the empirical exercise.

The program was intended for families in extreme poverty and

included financial incentives for participation in measures tar-

geted at improving the family’s health, nutrition, and children’s

education. The effect of this program has been widely studied

in economics; see, e.g. Parker and Todd (2017) [13].

Eligibility for the program was determined based on a pre-

intervention household poverty-index. Individuals above a cer-

tain threshold were eligible to receive a cash transfer through

the program(and are coded as the treatment group), while

individuals below the threshold were excluded and recorded
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Food1 Non-Food1 Food2 Non-Food2

No Controls -22.17 -9.13 54.89 43.76

(27.45) (21.90) (48.12) (32.34)

Linear -29.36 -6.49 55.59 45.44

(21.86) (20.62) (44.36) (29.76)

Lasso (Baseline) -25.65 -2.20 58.32 46.85

(21.86) (20.84) (45.69) (31.83)

Lasso (Flexible) -22.58 -1.98 52.32 38.07

(21.79) (20.76) (45.78) (32.42)

Random Forest -20.28 -1.44 55.38 36.98

(22.44) (21.03) (45.95) (31.02)

Boosted Trees -18.38 -3.74 53.37 43.09

(21.76) (20.94) (46.00) (31.78)

Note: RDD estimates of treatment effects of Progresa on food and non-

food consumption. Columns "Food1" and "Non-Food1" provide estimates

for the effects one year after implementation of the program, and columns

"Food2" and "Non-Food2" provide estimates for the effects two years

after implementation of the program. Row labels denote the method

used to estimate the conditional expectation of the outcomes near the

cutoff given the pretreatment variables. Standard errors are provided in

parentheses.

Table 17.1: RDD Estimates of Ef-

fects of Progresa

as a control group. Because our treatment variable is

eligiblity for the program, we are

technically estimating the average

intention to treat effect at the eligibil-

ity cutoff.

All observations above the threshold partic-

ipated in the program, which makes the analysis fall into the

standard (sharp) RDD framework.

We look at the outcome variables food and non-food con-

sumption, both one and two years after the implementation of

the program. The data set contains 1,944 observations and 27

measured variables including outcomes and pre-treatment de-

mographic and socioeconomic variables. We summarize RDD

estimates of the treatment effect on the four outcome variables

when we do not include controls, adjust for controls linearly,

and adjust for controls using a handful of machine learning

methods in Table 17.1.

As the theory predicts, the point estimates obtained across

the different methods are quite similar relative to standard

errors. We do see that the methods that control for pretreatment

variables are somewhat more precise than the baseline estimates

that do not use controls, though the method used to adjust for

the controls does not seem to have a major impact.

17.5 Notes

The ideas behind RDDs and IVs come together in fuzzy RDDs.
Whereas in sharp RDDs the treatment assignment is determin-
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istic depending on being above or below the cutoff, in fuzzy

RDDs the assignment mechanism is assigned at random with

a assignment probability that need not be 0 or 1. Nonetheless,

as in the sharp case, there is a discontinuity at the cutoff level.

Then, for the units in an infinitesimal neighborhood of the

cutoff, being just above or just below can be understood as an

instrument for the treatment, with the assignment probability re-

flecting the compliance and the size of the discontinuity therein

being the strength of the instrument. Almost the same tools for

IV can be used once we localize to the cutoff.

Excellent introductions and surveys for RDD are the "classics"

[14] and [15]. Updates including recent results are [16], [17], [18]

and the monographs [19] and [2].

17.6 Notebooks

Notebook 17.6.1 (RDD) R Notebook for RDD and Python

Notebook for RDD provide an analysis of the effect of the

antipoverty program Progresa/Opportunidades on the con-

sumption behavior of families in Mexico in the early 2000s.

17.7 Exercises

Exercise 17.7.1 ((Theoretical). RDD) Derive the moment con-

ditions which identify the target parameter in RDD and show

that it is orthogonal with regard to covariates.

Exercise 17.7.2 (RDD in Practice) In Israel, there is a strict

restriction on the maximum size of public-school classrooms.

For several decades in the previous century, the maximum was

40, such that, say, having 81 enrolled in a single grade meant a

school has to open three parallel classrooms for that grade so

that no one classroom has more than 40 students. Discuss why

this structure induces an RDD for the study of the impact of

class size on academic performance? Assuming we have the

school id, class id, and test scores of each individual student

in, say the 5th grade in 1991, how would you construct an

RDD: what would be the unit of analysis, the running variable,

and the cutoff? How should we interpret the ATE and to what

kind of student population might it not be relevant for and

why? (Once you have thought about this study question, you

can read about the study that famously leveraged this RDD

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/T/T_4_Regression_Discontinuity_on_Progresa_Data.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/T/T_4_Regression_Discontinuity_on_Progresa_Data.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/T/T_4_Regression_Discontinuity_on_Progresa_Data.ipynb
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in [20].)
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