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"Corpus omne perseverare in statu suo quiescendi

vel movendi uniformiter in directum, nisi quatenus

a viribus impressis cogitur statum illum mutare."

("An object remains in its state of rest or of moving

uniformly in a straight direction, unless forced to

change that state by impressed forces.")

– Isaac Newton [1].

Here we discuss debiased machine learning (DML) methods

for performing inference on average causal effects in panel (or

longitudinal) or repeated cross-section data in the difference-in-

differences (DiD) framework. We present and discuss the key

identifying assumption for the average treatment effect on the

treated based on DiD – the so-called "parallel trends" assump-

tion – allowing for high-dimensional observed confounding

variables. This assumption suggests a natural estimation strat-

egy that directly applies DML to estimate average treatment

effects on the treated using differenced outcomes.
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Figure 16.1: DiD is perhaps the

oldest quasi-experimental research

design. John Snow was a London

doctor and is often considered the

father of modern epidemiology.

[2] is essentially an effort to

provide convincing evidence

that water is the causal agent for

cholera transmission. It presents

and discusses multiple pieces

of evidence – including a DiD.

Source: https://www.micropia.
nl/en/discover/microbiology/
john-snow/, accessed 6/7/23.

16.1 Introduction

We now consider estimation of causal effects in panel (longitu-

dinal) data where we observe individual units in multiple time

periods or repeated cross-section data. While there are many po-

tential approaches for analyzing data with both a cross-sectional

and temporal component, we specifically look at difference-in-

differences (DiD) and closely related approaches.

DiD and related methods are widely used in empirical work

in the social sciences and in policy analysis. The basic DiD

structure relies on having two groups of observations – a

treatment group and a control group – for two time periods –

a pre-treatment and a post-treatment period. Canonical DiD

analysis then proceeds by comparing changes in the average

pre- and post-treatment outcomes in the treatment group to

changes in the average pre- and post-treatment outcomes in

the control group. Attaching a causal interpretation to this

comparison relies on an assumption that imposes that changes

in the treatment group in the absence of treatment would have

been the same as changes in the control group. This assumption

captures the intuition that the treatment group would have

evolved along the same path as the control group in the absence

of treatment – i.e., the two groups share "parallel trends."

Under the parallel trends assumption, the difference between

the treatment and control differences between the pre- and

post-treatment averages identifies the average treatment effect

on the treated (ATET).

In this chapter, we review the basic DiD framework. We then

focus on DiD in a setting where a researcher wishes to impose

conditional parallel trends. That is, we consider settings where

there are observed variables that are thought to be related

to the evolution of the outcome of interest such that parallel

trends holds only after conditioning on these variables. After

suitably defining the conditional parallel trends assumption,

we illustrate that the DML approach to estimating ATET from

Chapter 9 can be readily applied within the DiD context.

16.2 The Basic Difference-in-Differences

Framework: Parallel Worlds

The basic DiD structure has many appealing features. It is

intuitive. It allows for essentially unrestricted differences in

baseline outcomes for the treatment and control groups and

https://www.micropia.nl/en/discover/microbiology/john-snow/
https://www.micropia.nl/en/discover/microbiology/john-snow/
https://www.micropia.nl/en/discover/microbiology/john-snow/
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allows for treatment to depend on those baseline differences.

Estimation and inference are also relatively straightforward.

Here we review the DiD structure using potential outcomes

notation and highlight the key identifying assumptions.

The canonical DiD structure relies on existence of two time

periods, denoted 𝑡 = 1 and 𝑡 = 2, and maintains that all

observations are in the control state at 𝑡 = 1. As such, we

introduce potential outcomes One can also define

four potential outcomes

(𝑌𝑡(0, 0), 𝑌𝑡(0, 1), 𝑌𝑡(1, 0), 𝑌𝑡(1, 1))
for each time period. The DiD struc-

ture imposes that (𝑌𝑡(1, 0), 𝑌𝑡(1, 1))
can never be observed so it is

impossible to learn about the

effects of treatment paths that

have treatment occur at t = 1. We

choose the simpler representation

with a single argument in the

potential outcomes for notational

clarity. Keeping explicit track of

potential outcomes for different

treatment paths is important in

more complicated settings with

more potential treatment paths

as may arise with many time

periods or more complex treatment

variables.

𝑌𝑡(𝑑)

where 𝑑 ∈ {0, 1} denotes the treatment state in period 𝑡 = 2.

For example, 𝑌1(1) denotes the period one outcome under

treatment – that is, the outcome in the period before treatment

is received – and 𝑌2(1) denotes the period two outcome under

treatment. Let 𝐷 ∈ {0, 1} be the treatment group indicator

with 𝐷 = 1 indicating that treatment is received at 𝑡 = 2 and

𝐷 = 0 indicating no treatment in either time period. Observed

outcomes in period 𝑡 may then be represented as 𝑌𝑡 = 𝐷𝑌𝑡(1) +
(1 − 𝐷)𝑌𝑡(0). As in other causal inference contexts, we are left

with missing data as we are unable to observe observations

simultaneously in the treatment and control state.

DiD proceeds under the following key assumption:

Assumption 16.2.1 (Parallel Trends and No Anticipation)

Potential outcomes satisfy

E[𝑌2(0) − 𝑌1(0) | 𝐷 = 1] = E[𝑌2(0) − 𝑌1(0) | 𝐷 = 0] (16.2.1)

and

E[𝑌1(0) | 𝐷 = 1] = E[𝑌1(1) | 𝐷 = 1]. (16.2.2)

Condition (16.2.1) is the parallel trends assumption. It requires

that, in expectation, the change in control potential outcomes

among the treatment group is the same as the change in the

control potential outcomes among the control group. Con-

dition (16.2.2) imposes that receipt of treatment at 𝑡 = 2

does not impact average period 1 potential outcomes. Here,

we are effectively ruling out anticipation effects. Often, the no anticipation assump-

tion is left implicit or ignored. We

state it for clarity and because it al-

lows clean definition of the causal

effect of interest.

Importantly,

(16.2.2) allows for systematic differences between average po-

tential outcomes among treated and control observations in

the pre-treatment period. That is, it does not impose that

E[𝑌1(0) | 𝐷 = 1] = E[𝑌1(0) | 𝐷 = 0]. Thus, we can accom-

modate, for example, scenarios where we believe that period

two treatment assignment is related to period one outcomes.
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It is worth explicitly noting that the parallel trends assumption is

typically functional form dependent. That is, if E[𝑌2(0) −𝑌1(0) |
𝐷 = 1] = E[𝑌2(0) − 𝑌1(0) | 𝐷 = 0], it will generally not be the

case that E[𝑔(𝑌2(0))−𝑔(𝑌1(0)) | 𝐷 = 1] = E[𝑔(𝑌2(0))−𝑔(𝑌1(0)) |
𝐷 = 0]. One situation where parallel trends

hold regardless of the outcome

transformation is when 𝐷 is

randomly assigned (i.e., when

(𝑌1(0), 𝑌1(1), 𝑌2(0), 𝑌2(1) ⊥ 𝐷). See

[3] for further discussion.

A related framework to DiD that is

independent to monotone transfor-

mations (at the cost of other restric-

tions, of course) is the changes-in-

changes model of [4].

For example, suppose the outcome of interest is wages.

Parallel trends holding for wage does not imply that parallel

trends holds for log(wage), and the DiD estimator based on

log(wage) need not recover a causal effect. Intuitively, this

functional form dependence arises because parallel trends relies

on latent sources of confounding being additively separable so

that they are eliminated by the differencing operation.

It is straightforward to verify that ATET is identified under

Assumption 16.2.1. Note that the right-hand-side of Eq. (16.2.1)

is an observable quantity while the left-hand-side corresponds

to the unobservable change in the control potential outcomes

of treated units. Parallel trends allows us to impute this latent

change from the observed change in the control units. Effec-

tively, we are assuming that the treated observations would

have changed in the same way as the control observations

in the absence of treatment. Similarly, the right-hand-side of

Eq. (16.2.2) is an observable quantity while the left-hand-side is

the unobserved average of control potential outcomes in period

one for the treated group. Eq. (16.2.2) allows us to impute this

baseline average from the observed baseline average in the treat-

ment group. We can then reconstruct the counterfactual average

of the control potential outcome in the post-treatment period

by adjusting this baseline average by the observed change in

average outcomes between the two periods in the control group.

Figure 16.2 presents a graphical illustration of the identification

argument.

More formally, we can put this together to write the ATET One could identify the ATE by aug-

menting Assumption 16.2.1 with

E[𝑌2(1)−𝑌1(1) | 𝐷 = 0] = E[𝑌2(1)−
𝑌1(1) | 𝐷 = 1] and E[𝑌1(0) | 𝐷 =

0] = E[𝑌1(1) | 𝐷 = 0]. Recall that

we are notation subsumes treat-

ment paths so that 𝑌2(1) denotes

the potential outcome in the second

time period of a unit under control

in period 1 and under treatment in

period 2 while 𝑌1(1) denotes the

first time period of unit under con-

trol in period 1 and under treatment

in period 2. The first condition is

thus not just a restriction on evo-

lution of potential outcomes in a

specific treatment state but also a re-

striction on treatment effects them-

selves which seems hard to moti-

vate in realistic settings. As such,

we follow the majority of the DiD

literature in focusing on estimation

of ATET.

as

𝛼 = E[𝑌2(1) − 𝑌2(0) | 𝐷 = 1]
= E[𝑌2(1) | 𝐷 = 1] − E[𝑌2(0) | 𝐷 = 1]
= E[𝑌2(1) | 𝐷 = 1] (16.2.3)

− (E[𝑌1(1) | 𝐷 = 1] + E[𝑌2(0) − 𝑌1(0) | 𝐷 = 0])
= E[𝑌2(1) − 𝑌1(1) | 𝐷 = 1] − E[𝑌2(0) − 𝑌1(0) | 𝐷 = 0]

where the third equality follows from a direct application of

Assumption 16.2.1. The expression in the last line is exactly

the difference between the difference between post- and pre-

treatment period average outcomes in the treatment group

and the difference between post- and pre-treatment period

average outcomes in the control group – hence, difference-in-

differences.
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Figure 16.2: DiD Identification.

This figure illustrates identification

of the ATET in the canonical DiD

framework. Objects represented in

black are observable. Objects in

blue are unobserved and identi-

fied via Assumption 16.2.1. Visu-

ally we impute the unobserved

E[𝑌2(0) | 𝐷 = 1] by extrapolating

from the observed E[𝑌1(1) | 𝐷 = 1]
using the observed "trend" between

E[𝑌1(0) | 𝐷 = 0] and E[𝑌2(0) |
𝐷 = 0]. The ATET is then the

difference between the observed

E[𝑌2(1) | 𝐷 = 1] and the imputed

E[𝑌2(0) | 𝐷 = 1].

Estimation of the ATET in canonical DiD in a finite sample is

straightforward by considering four group means:

𝜃̂𝑠(𝑑) =
𝔼𝑛[𝑌1(𝐷 = 𝑑, 𝑡 = 𝑠)]
𝔼𝑛[1(𝐷 = 𝑑, 𝑡 = 𝑠)] .

Defining the estimator of the ATET as 𝛼̂, we have

𝛼̂ = (𝜃̂2(1) − 𝜃̂1(1)) − (𝜃̂2(0) − 𝜃̂1(0)). (16.2.4)

Asymptotic properties under independence follow in a fashion

similar to difference-in-mean estimators for the ATE outlined

in Chapter ??.

We can also obtain a numerically equivalent estimator of the

ATET via regression. Specifically, the ordinary least squares

estimator of the parameter 𝛼 in the linear model

𝑌 = 𝛽0 + 𝛽1𝐷 + 𝛽2𝑃 + 𝛼𝐷𝑃 +𝑈, (16.2.5)

where 𝑃 is a binary variable with 𝑃 = 1 indicating the post-

treatment time period (t = 2), is numerically equivalent to

𝛼̂ in (16.2.4). The regression formulation is especially conve-

nient for obtaining standard errors under different dependence

assumptions.
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1979 1981 Difference

Miami Unemployment 5.1 3.9 -1.2

(1.1) (0.9) (1.4)

Comparison Unemployment 4.4 4.3 -0.1

(0.3) (0.3) (0.4)

Difference (Miami - Comparison) 0.7 -0.4 -1.1

(1.1) (0.9) (1.5)

Note: Unemployment rates among white individuals in Miami and four

comparison cities – Atlanta, Los Angeles, Houston, and Tampa-St. Peters-

burg – reproduced from [5]. Standard errors assuming independence

are in parentheses. The DiD estimate is provided in the entry in the last

row and column.

Table 16.1: DiD Estimation of the

Effect of the Mariel Boatlift on Un-

employment

The Mariel Boatlift

Card’s analysis of the impact of the Mariel Boatlift on the Miami

labor market, [5], provides a prototypical application of DiD.

For example, it is the example of DiD in Angrist and Krueger’s

Handbook of Labor Economics chapter on empirical methods [6].

The basic idea of the study was to use the Mariel Boatlift – a

sudden and arguably unexpected inflow of immigrants that

increased the Miami labor force by about 7% between May and

September of 1980 – to understand the impact of immigration

on low-skilled labor market outcomes.

A key component of the analysis was arguing that Atlanta,

Los Angeles, Houston, and Tampa-St. Petersburg provide valid

control cities in the sense that we might plausibly believe that

the change in labor market outcomes in these cities from the

late 1970’s to the early 1980’s is useful for inferring how the

Miami labor market would have changed in the absence of

the Mariel immigration. Part of the argument in [5] relies on

evidence that the cities had similar characteristics in the pre-

treatment period. Effectively, this argument relies on parallel

trends holding conditional on these pre-treatment characteristics.

We consider using DML to flexibly control for rich covariates in

Section 16.3.

We illustrate canonical DiD in the Mariel Boatlift example in

Table 16.1 which uses numbers taken from Table 4 in [5]. Here, we

see the DiD estimate of the ATET on unemployment is -1.1 with

standard error 1.5, which does not provide strong evidence of a

large impact of the Mariel immigration on unemployment.
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16.3 DML and Conditional

Difference-in-Differences

In many empirical applications, researchers deviate from the

canonical DiD framework by including additional control vari-

ables. The fundamental motivation is similar to that for includ-

ing control variables in other causal contexts, e.g., as motivated

in Chapter 5: it is easier to believe that parallel trends holds

among units that are identical in terms of observed charac-

teristics. In this section, we explore flexibly including control

variables in a DiD framework leveraging DML methods.

We restate the canonical DiD assumptions so that they hold

after conditioning on pre-treatment/strictly exogenous charac-

teristics 𝑋.

Assumption 16.3.1 (Conditional DiD Assumptions) Potential
outcomes satisfy conditional parallel trends

E[𝑌2(0) − 𝑌1(0) | 𝐷 = 1, 𝑋] =
E[𝑌2(0) − 𝑌1(0) | 𝐷 = 0, 𝑋] 𝑎.𝑠.

(16.3.1)

and no anticipation

E[𝑌1(0) | 𝐷 = 1, 𝑋] = E[𝑌1(1) | 𝐷 = 1, 𝑋] 𝑎.𝑠. (16.3.2)

In addition, there is a treatment group and its characteristics overlap
with the control group

∃ 𝜀 > 0 : P(𝐷 = 1) ≥ 𝜀 and P(𝐷 = 1 | 𝑋) ≤ 1 − 𝜀 𝑎.𝑠.
(16.3.3)

The intuition for (16.3.1) and (16.3.2) is essentially identical to

the intuition for Assumption 16.2.1 discussed in the previous

section. The only difference is that these conditions are now

imposed within observationally identical groups as defined

by 𝑋. Condition (16.3.3) is a standard overlap condition for

identifying ATET which essentially imposes that there are

control observations available for every value of 𝑋. Under

Assumption 16.3.1, it is straightforward to verify that the ATET

is identified by repeating the argument in (16.2.3) conditional

on 𝑋 and averaging over the distribution of 𝑋 in the 𝐷 = 1

group. We leave verification of identifica-

tion of the ATET in the conditional

DiD framework as an exercise.Similar to estimating parameters in the partially linear model

or average treatment effects under confounding as discussed in

Chapter 9, obtaining estimates of the ATET in the conditional
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1: We provide the Neyman orthog-

onal score and discuss DML estima-

tion with repeated cross-sections in

Section 16.A.

DiD setting will require estimating high-dimensional nuisance

objects. We thus exploit DML methods to accommodate the use

of flexible methods in estimating these objects.

A key input into DML estimation is a Neyman orthogonal score.

In the conditional DiD framework with panel data,
1

𝜓(𝑊 ; 𝛼, 𝜂) = 𝐷 − 𝑚(𝑋)
𝑝(1 − 𝑚(𝑋)) (Δ𝑌 − 𝑔(0, 𝑋)) −

𝐷

𝑝
𝛼 (16.3.4)

provides an orthogonal score for the ATET, 𝛼, where 𝑊 =

(𝑌1, 𝑌2, 𝐷, 𝑋) denotes the observable variables; Δ𝑌 = 𝑌2 − 𝑌1;

𝜂 = (𝑝, 𝑚, 𝑔) denotes nuisance parameters with true values

𝑝0 = E[𝐷], 𝑚0(𝑋) = E[𝐷 | 𝑋], and 𝑔0(0, 𝑋) = E[Δ𝑌 | 𝐷 =

0, 𝑋]. See also [7], [8], [9]. Comparing to the score for the ATET

provided in Chapter 9, we see that the score function in (16.3.4)

is identical to that for learning the ATET under conditional

ignorability where the outcome variable is simply defined as

Δ𝑌.

Given the Neyman orthogonal score (16.3.4), it is then straight-

forward to implement DML to estimate the ATET.

√
𝑛-asymptotic

normality of 𝛼̂, the DML estimator of the ATET, follows from

Theorem 9.4.1 in Chapter 9.

DML for ATET in Conditional DiD

Let (𝑊𝑖)𝑛𝑖=1
= (𝑌1𝑖 , 𝑌2𝑖 , 𝐷𝑖 , 𝑋𝑖)𝑛𝑖=1

be the observed data.

1. Partition sample indices into random folds of ap-

proximately equal size: {1, ..., 𝑛} = ∪𝐾
𝑘=1
𝐼𝑘 . For each

𝑘 = 1, ..., 𝐾, compute estimators 𝑝̂[𝑘], 𝑔̂[𝑘], and 𝑚̂[𝑘]
of E[𝐷] and the conditional expectation functions

𝑔0(0, 𝑋) = E[Δ𝑌 | 𝐷 = 0, 𝑋] and 𝑚0(𝑋) = E[𝐷 | 𝑋]
leaving out the 𝑘th

block of data and enforcing

𝑚̂[𝑘] ≤ 1 − 𝜖.

2. For each 𝑖 ∈ 𝐼𝑘 , let 𝑘(𝑖) denote the fold to which

observation 𝑖 belongs and

𝜓̂(𝑊𝑖 ; 𝛼) =
𝐷𝑖 − 𝑚̂[𝑘(𝑖)](𝑋𝑖)

𝑝̂[𝑘(𝑖)](1 − 𝑚̂[𝑘(𝑖)](𝑋𝑖))
(Δ𝑌𝑖 − 𝑔̂[𝑘(𝑖)](0, 𝑋𝑖))

− 𝐷𝑖

𝑝̂[𝑘(𝑖)]
𝛼.

Compute the estimator 𝛼̂ as the solution to
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2: The federal minimum wage over

2001-2007 was constant at $5.15.

𝔼𝑛[𝜓̂(𝑊𝑖 ; 𝛼)] = 0 which yields

𝛼̂ =

1

𝑛

∑𝑛
𝑖=1

𝐷𝑖−𝑚̂[𝑘(𝑖)](𝑋𝑖)
𝑝̂[𝑘(𝑖)](1−𝑚̂[𝑘(𝑖)](𝑋𝑖)) (Δ𝑌𝑖 − 𝑔̂[𝑘(𝑖)](0, 𝑋𝑖))

1

𝑛

∑𝑛
𝑖=1

𝐷𝑖

𝑝̂[𝑘(𝑖)]

.

3. Let

𝜑̂(𝑊𝑖) =
𝜓̂(𝑊𝑖 ; 𝛼̂)

1

𝑛

∑𝑛
𝑖=1

𝐷𝑖

𝑝̂[𝑘(𝑖)]

.

Construct standard errors via√
V̂/𝑛, V̂ = 𝔼𝑛[𝜑̂(𝑊𝑖)2]

and use standard normal critical values for inference.

Comparison to Adding Regression Controls

The equivalence between the ATET estimator obtained by di-

rectly looking to the difference between the treatment and

control differences in means and the ordinary least squares

estimator of the coefficient 𝛼 in the linear model (16.2.5) in the

canonical DiD setting suggests a simple approach to incorpo-

rating control variables by augmenting the regression model

to include controls linearly. That is, add 𝛽′𝑋 to the model in

(16.2.5). However, the coefficient on the 𝐷𝑃-interaction term is

not equivalent to the ATET and need not uncover any sensible

causal effect without very strong functional form restrictions

and restrictions on treatment effect heterogeneity. See, e.g., [10]

for further discussion. In contrast, the DML estimator always

targets the ATET under Assumption 16.3.1 and is relatively

simple to implement.

The Notebooks 16.6.1 contain the

code for the minimum wage exam-

ple.

16.4 Example: Minimum Wage

In this section, we use DML for DiD to estimate the effect

of minimum wage increases on teen employment. We use

data from and roughly follow the approach of [11]. The data are

annual county level data from the United States covering 2001 to

2007. The outcome variable is log county-level teen employment,

and the treatment variable is an indicator for whether the county

has a minimum wage above the federal minimum wage.
2

Note
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3: Under these definitions, this ex-

ample is an example of staggered
adoption. Staggered adoption refers

to a setting with a binary, absorb-

ing treatment variable. That is, once

an observation becomes treated

it remains treated thereafter. This

setting is straightforward to ana-

lyze as treatment paths are com-

pletely characterized by the treat-

ment date and controls can be con-

structed from observations that are

not treated during the sample pe-

riod (the never treated) or observa-

tions that are not treated prior to

the treatment date and remain un-

treated in the period in which one

wants to estimate the ATET (the

as-yet not treated).

4: We follow [11] and categorize

each observation as belonging to

one of four U.S. census regions.

that this definition of the treatment variable makes the analysis

straightforward but ignores the nuances of the exact value of

the minimum wage in each county and how far those values

are from the federal minimum.
3

The data also includes county

population and county average annual pay. We follow [11] by

removing observations with missing entries which produces

a balanced panel with data from counties in 42 states. See [11],

[12], and [13] for further details regarding the data.

We focus our analysis exclusively on the set of counties that

had wage increases away from the federal minimum wage in

2004. That is, we treat 2003 and earlier as the pre-treatment

period and the period 2004-2007 as the post-treatment period.

We assume that parallel trends holds after conditioning on

three pre-treatment variables – 2001 population, 2001 average

pay, and 2001 teen employment – and the region to which each

county belongs.
4

We estimate dynamic effects by estimating the ATET in 2004-

2007 which provide estimates of the effect in the year of treat-

ment and one, two, and three years after the treatment. For

control observations, we use the set of observations that still

have minimum wage equal to the federal minimum in each year

– the "as-yet not treated" – so the control group changes from

period to period. For example, we use all observations that had

minimum wage equal to the federal minimum in 2004 as control

observations when estimating the ATET in 2004, but we use

all observations that had minimum wage equal to the federal

minimum in 2005 as control observations to estimate the 2005

ATET. These definitions yield 102 treatment observations for

estimating each ATET and 2389, 2327, 2080, and 1417 control

observations for 2004, 2005, 2006, and 2007 respectively.

Since our goal is to estimate the ATET of the county level mini-

mum wage being larger than the federal minimum imposing

that parallel trends holds after flexibly controlling for region and

our pre-treatment variables, we employ DML using the algo-

rithm from Section 16.3. We consider using an array of methods

for learning the nuisance functions including several of the mod-

ern regression methods that we discussed in previous chapters.

Specifically, we consider ten candidate learners for the high-

dimensional nuisance functions 𝑔0(0, 𝑋) = E[Δ𝑌 | 𝐷 = 0, 𝑋]
and 𝑚0(𝑋) = E[𝐷 | 𝑋]. We consider using no control variables

(No Controls) which corresponds to maintaining unconditional

parallel trends. We consider linear index models using only the

raw control variables (Basic) – the four region dummies and log

of 2001 population, log of 2001 average pay, and log of 2001 em-

ployment – and using a full cubic expansion of the raw control



16 Difference-in-Differences 461

2004 2005 2006 2007

A. E[Δ𝑌 | 𝐷 = 0, 𝑋]
No Controls 0.1633 0.1882 0.2235 0.2302

Basic 0.1634 0.1854 0.2191 0.2216

Expansion 0.1887 0.2122 0.2445 0.2710

Lasso (CV) 0.1631 0.1851 0.2193 0.2214

Ridge (CV) 0.1631 0.1851 0.2191 0.2213

Random Forest 0.1716 0.1982 0.2330 0.2388

Deep Tree 0.1922 0.2250 0.2599 0.2708

Shallow Tree 0.1678 0.1924 0.2279 0.2290

Tree (CV) 0.1633 0.1889 0.2178 0.2227

B. E[𝐷 | 𝑋]
No Controls 0.1983 0.2006 0.2111 0.2503

Basic 0.1986 0.2009 0.2113 0.2217

Expansion 0.1988 0.2007 0.2113 0.2217

Lasso (CV) 0.1968 0.1986 0.2083 0.2197

Ridge (CV) 0.1971 0.1989 0.2086 0.2198

Random Forest 0.2005 0.2051 0.2128 0.2355

Deep Tree 0.2207 0.2364 0.2303 0.2744

Shallow Tree 0.1921 0.1944 0.2029 0.2301

Tree (CV) 0.1937 0.1955 0.2039 0.2311

Note: Cross-fit RMSE for predicting Δ𝑌 and treatment status 𝐷 in the

minimum wage example. Row labels denote the method used to estimate

the nuisance function, and column labels indicate the year for which we

are calculating the ATET, with 2004, 2005, 2006, and 2007 respectively

corresponding to the year of the treatment, one year after treatment, two

years after treatment, and three years after treatment.

Table 16.2: RMSE for Learners in

Minimum Wage example

5: We use a linear model estimated

by OLS for 𝑔0(0, 𝑋) and a logis-

tic model with linear index in the

stated variables for 𝑚0(𝑋).

6: For any observation with esti-

mated propensity score larger than

0.95, we replace the propensity

score with 0.95. Applying this trim-

ming, we replace 12, 10, 13, and 21

observations for the deep tree in

2004-2007 respectively and replace

2, 2, and 1 observation for Basic,

Expansion, and Lasso (CV) in 2007.

variables including all third order interactions (Expansion).
5

We consider Lasso and Ridge with the cubic expansion of the

raw variables and penalty parameter chosen by cross-validation

(Lasso (CV) and Ridge (CV)). We consider a random forest with

no randomization over input variables and 1000 trees (Random

Forest). Additionally, we consider three different tree models:

a tree with depth 15 (Deep Tree), a tree with depth 3 (Shallow

Tree), and a tree tuned using cross-validation (Tree (CV)). For

random forest and the tree models, we use region, log of 2001

population, log of 2001 average pay, and log of 2001 employment

as input variables. Finally, we consider estimation using the

learner for E[Δ𝑌 | 𝐷 = 0, 𝑋] and for E[𝐷 | 𝑋] that produce the

lowest RMSE during cross-fitting (Best) allowing for a different

learner to be selected for each task.
6

We start by reporting the RMSE obtained during cross-fitting

for each learner in each period in Table 16.2. Here we see that the

Deep Tree systematically performs substantially worse in terms

of cross-fit predictions than the other learners for both tasks

and that Expansion performs similarly poorly for the outcome

prediction. It also appears there is some signal in the regressors,
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2004 2005 2006 2007

No Controls -0.039 -0.076 -0.117 -0.131

(0.019) (0.021) (0.023) (0.026)

Basic -0.037 -0.066 -0.088 -0.041

(0.018) (0.020) (0.021) (0.033)

Expansion -0.022 -0.046 -0.061 0.303

(0.025) (0.030) (0.033) (0.227)

Lasso (CV) -0.035 -0.062 -0.082 -0.049

(0.018) (0.020) (0.021) (0.031)

Ridge (CV) -0.035 -0.062 -0.083 -0.061

(0.018) (0.020) (0.021) (0.025)

Random Forest 0.013 -0.056 -0.039 -0.071

(0.029) (0.024) (0.028) (0.038)

Deep Tree 0.077 0.007 0.100 -0.470

(0.079) (0.172) (0.080) (0.178)

Shallow Tree -0.028 -0.040 -0.058 -0.065

(0.019) (0.021) (0.021) (0.026)

Tree (CV) -0.027 -0.045 -0.060 -0.069

(0.019) (0.021) (0.021) (0.025)

Best -0.028 -0.051 -0.055 -0.055

(0.019) (0.021) (0.021) (0.031)

Note: Estimated ATET and standard errors (in parentheses) in the

minimum wage example. Row labels denote the method used to estimate

the nuisance function, and column labels indicate the year for which we

are calculating the ATET, with 2004, 2005, 2006, and 2007 respectively

corresponding to the year of the treatment, one year after treatment, two

years after treatment, and three years after treatment.

Table 16.3: Estimated ATET in Min-

imum Wage example

especially for the propensity score, as all methods outside of

Deep Tree and Expansion produce notably smaller RMSEs than

the No Controls baseline. The other methods all produce similar

RMSEs, with a small edge going to Ridge and Lasso. While

it would be hard to reliably conclude which of the relatively

good performing methods is statistically best here, one could

exclude Expansion and Deep Tree from further consideration

on the basis of out-of-sample performance suggesting they

are doing a poor job approximating the nuisance functions.

Best (or a different ensemble) provides a good baseline that

is principled in the sense that one could pre-commit to using

the best learners without having first looked at the subsequent

estimation results.

We report estimates of the ATET in each period in Table 16.3.

Here, we see that the majority of methods provide point es-

timates that suggest the minimum wage increase leads to de-

creases in youth employment with small effects in the initial

period that become larger in the years following the treatment.

This pattern seems economically plausible as it may take time

for firms to adjust employment and other input choices in
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response to the minimum wage change. The methods that pro-

duce estimates that are not consistent with this pattern are Deep

Tree and Expansion which are both suspect as they systemati-

cally underperform in terms of having poor cross-fit prediction

performance. In terms of point estimates, the other pattern that

emerges is that all estimates that use the covariates produce

ATET estimates that are systematically smaller in magnitude

than the No Controls baseline, suggesting that failing to include

the controls may lead to overstatement of treatment effects in

this example.

Turning to inference, we would reject the hypothesis of no

minimum wage effect in 2005 and 2006 at the 5% level, even

after multiple testing correction, if we were to focus on the

row "Best" (or many of the other individual rows). Focusing on

"Best" is a reasonable ex ante strategy that could be committed

to prior to conducting any analysis. It is, of course, reassuring

that this broad conclusion is also obtained using many of the

individual learners suggesting some robustness to the exact

choice of learner made.

Because we have data for the period 2001-2007, we can perform

a so-called placebo or pre-trends test to provide some evidence

about the plausibility of the conditional DiD assumptions,

Assumption 16.3.1. Specifically, we can continue to use 2003 as

the reference period but now consider 2002 to be the treatment

period. Sensible economic mechanisms underlying Assumption

16.3.1 would typically suggest that the ATET in 2002 – before

the 2004 minimum wage change we are considering – should

be zero. Finding evidence that the ATET in 2002 is non-zero

then calls into question the validity of Assumption 16.3.1.

We repeat the exercise for obtaining our ATET estimates and

standard error for 2004-2007 and report the results in Table

16.4. Here we see broad agreement across all methods in the

sense of returning point estimates that are small in magnitude

and small relative to standard errors. In no case would we

reject the hypothesis that the pre-event effect in 2002 is different

from zero at usual levels of significance. We note that failing to

reject the hypothesis of no pre-event effects certainly does not

imply that Assumption 16.3.1 is in fact satisfied. For example,

confidence intervals include values that would be consistent

with relatively large pre-event effects. Conditioning inference

on the results of such an assessment is also generally a bad

idea; see, e.g. [14] and [15] for a discussion specifically in the

context of DiD. However, it is reassuring to see that there is

not strong evidence of a violation of the underlying identifying

assumption.
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RMSE Y RMSE D ATET s.e.

No Controls 0.1543 0.1945 -0.0037 (0.0131)

Basic 0.1541 0.1949 -0.0044 (0.0130)

Expansion 0.1577 0.1949 0.0046 (0.0140)

Lasso (CV) 0.1544 0.1932 -0.0039 (0.0131)

Ridge (CV) 0.1544 0.1935 -0.0053 (0.0131)

Random Forest 0.1635 0.2265 0.0230 (0.0265)

Deep Tree 0.1822 0.2234 0.0080 (0.0276)

Shallow Tree 0.1620 0.1884 -0.0037 (0.0134)

Tree (CV) 0.1550 0.1905 -0.0056 (0.0133)

Best 0.1541 0.1884 -0.0031 (0.0134)

Note: Estimated pre-event (2002) ATET and standard errors (in parenthe-

ses) in the minimum wage example. Row labels denote the method used

to estimate the nuisance function. RMSE Y and RMSE D give cross-fit

RMSE for the outcome and treatment respectively. ATET provides the

point estimate of the ATET based on the method in the row label with

standard error given in column s.e.

Table 16.4: Pre-trends Assessment

16.5 Notes

There is a relatively large literature focusing on flexibly esti-

mating ATET in DiD contexts. Much of this work has focused

on potential failure of the usual practice of estimating homo-

geneous coefficient linear models with additive fixed effects

for groups and time periods under heterogeneous treatment

effects. Specifically, much of the work has noted that coefficients

on a treatment variable in a homogeneous linear model with

fixed effects need not be proper weighted averages of heteroge-

neous treatment effects but may place negative weights on some

effects. The possibility of negative weights then leaves open

the possibility of, for example, having uniformly positive treat-

ment effects but obtaining negative and significant estimates of

the coefficient on a treatment variable in a linear model. The

DML approach we present in this chapter offers one solution

to this problem that allows for flexibly accommodating control

variables that can account for heterogeneity. See the excellent

review papers [11], [16], [17] for more discussion.

16.6 Notebooks

Notebook 16.6.1 (Minimum Wage) Minimum Wage R Note-

book and Minimum Wage Python Notebook contain the

analysis of minimum wage example

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/T/T-3 Diff-in-Diff Minimum Wage Example.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/T/T-3 Diff-in-Diff Minimum Wage Example.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/T/T-3 Diff-in-Diff Minimum Wage Example.ipynb
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16.7 Exercises

Exercise 16.7.1 (ATET) Verify that the ATET is identified

under Assumption 16.3.1. Provide a short explanation of the

intuition for the identification result. Give an intuitive exam-

ple where the ATET would be identified after conditioning

on covariates but where identification of the ATET would fail

in the canonical DiD framework (i.e. without conditioning on

additional covariates).

Exercise 16.7.2 (Minimum Wage I) Study the minimum wage

empirical analysis notebook. Estimate the ATET for observa-

tions treated in a year different than 2004 – e.g. repeat the

analysis doing the exercise for observations treated in 2005.

Exercise 16.7.3 (Minimum Wage II) Study the minimum wage

empirical analysis notebook. Estimate the ATET using the

never treated as opposed to the not-yet treated as the control

group.
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16.A Conditional

Difference-in-Differences with

Repeated Cross-Sections

Here we provide the Neyman orthogonal score for the ATET

in the conditional DiD context with repeated cross-section

data. For additional development including formal statement

of additional assumptions for DiD with repeated cross sections,

see [7], [8], [9].

The chief difference in this setting relative to when one has

panel data is that we cannot directly construct the difference

between outcomes in the first and second period as we do

not see the same individuals across time periods. Rather, we

revert to the analog of the canonical DiD estimator by directly

working with the four conditional means defined by grouping

the treated and control observations pre- and post-treatment.

Specifically, we make use of the score function

𝜓(𝑊, 𝛼, 𝜂) =
(
𝐷𝑇

𝑝𝜆
(𝑌 − 𝑔(1, 2, 𝑋))

−𝐷(1 − 𝑇)
𝑝(1 − 𝜆) (𝑌 − 𝑔(1, 1, 𝑋))

)
−

(
𝑚(𝑋)(1 − 𝐷)𝑇
𝑝𝜆(1 − 𝑚(𝑋)) (𝑌 − 𝑔(0, 2, 𝑋))

−𝑚(𝑋)(1 − 𝐷)(1 − 𝑇)
𝑝(1 − 𝜆)(1 − 𝑚(𝑋)) (𝑌 − 𝑔(0, 1, 𝑋))

)
+ 𝐷
𝑝
(𝑔(1, 2, 𝑋) − 𝑔(1, 1, 𝑋))

− 𝐷
𝑝
(𝑔(0, 2, 𝑋) − 𝑔(0, 1, 𝑋)) − 𝐷

𝑝
𝛼

(16.A.1)

where 𝑊 = (𝑌, 𝑇, 𝐷, 𝑋) denotes the observable variables for

each observation with 𝑇 an indicator which equals one if the

observation is in the post-treatment period (period 2) and

𝜂 = (𝑝,𝜆, 𝑚, 𝑔) denotes nuisance parameters with true values

𝑝0 = E[𝐷], 𝜆0 = E[𝑇], 𝑚0(𝑋) = E[𝐷 | 𝑋], and 𝑔0(𝑑, 𝑡, 𝑋) =
E[𝑌 | 𝐷 = 𝑑, 𝑇 = 𝑡 , 𝑋].

Under iid sampling, we can directly apply the generic cross-

fitting approach to DML as in Section 9.4. In many DiD settings,

researchers wish to allow for unmodeled dependence between

observations corresponding to different groups such as cities or

counties. As long as there are many such groups, it is straight-

forward to modify the DML algorithm to accommodate this

dependence. The algorithm simply needs to be adjusted by
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forming the cross-fitting folds such that all observations within

groups are included together in the same fold. Similarly, it is

straightforward to adjust inference to account for this depen-

dence by applying clustered standard errors with clustering

done at the group level.
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