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"You can, for example, never foretell what any one

man will do, but you can say with precision what

an average number will be up to."

– Sherlock Holmes [1].

We study flexible estimation of heterogeneous treatment effects.

We target the construction of an estimate of the true CATE

function and not its projection on a simpler function space,

with as small root-mean-squared-error as possible. We consider

flexible estimation using generic ML techniques and discuss

how one can perform model selection and out-of-sample val-

idation of the quality of the learned model of heterogeneity.

We conclude with the topic of policy learning, i.e. constructing

optimal personalized policies.
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15.1 ML Methods for CATE Estimation

We consider the same setting as in Chapter 14 of analyzing the

heterogeneous effect of a binary treatment in the presence of a

high-dimensional set of observed controls 𝑍, under conditional

exogeneity. In this section, we target the construction of an

estimate 𝜏̂(𝑋) of the true CATE function 𝜏0(𝑋) and not its

best linear approximation, using generic ML techniques, in a

manner such that the mean squared error E𝑋(𝜏0(𝑋) − 𝜏̂(𝑋))2,

which is also what we used in Chapter 9 to measure the quality

of non-linear predictive ML models, is minimized. We will

also be interested in the mean squared error of the estimate

with respect to the best approximation of the CATE over some

flexible, potentially non-linear function space𝑇, i.e. the function

𝜏∗ defined as

𝜏∗ = arg min

𝜏∈𝑇
E𝑋(𝜏0(𝑋) − 𝜏(𝑋))2. (15.1.1)

As in the previous section, the key is to decompose the esti-

mation of the CATE into a sequence of regression problems.

Then generic ML techniques can be used to address each of

these regression problems. This approach has been coined meta-
learning in the literature on CATE estimation, since we are trying

to treat ML techniques as a black-box oracle that solves any

regression problem and we are trying to build on top of that

oracle to learn the CATE. Motivated by the ability to construct

confidence intervals, in the previous section, we provided one

such choice of a reduction, as we will explain later. However,

when one is primarily interested in mean squared error, other

decompositions could potentially have better finite sample per-

formance. We present here the multitude of such meta-learning

approaches that have been proposed in the literature and we

will conclude with a comparative analysis of each of them.

Meta-Learning Strategies for CATE Estimation

To simplify the exposition, and emphasizing the meta-learning

aspect of these methods, we will introduce a notation for a

regression estimate oracle. We denote with 𝑂𝐻({𝑋𝑖 , 𝑌𝑖 ,𝑊𝑖}𝑛𝑖=1
)

an oracle algorithm that takes as input a dataset of 𝑛 i.i.d. sam-

ples, consisting of covariatex𝑋𝑖 , regression labels𝑌𝑖 and sample

weights𝑊𝑖 (where weights are assumed to be independent of

𝑌𝑖 given 𝑋𝑖) and produces an estimate ℎ̂ of the function that
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minimizes the sample-weighted square loss:

ℎ0 = arg min

ℎ∈𝐻
E𝑊(𝑌 − ℎ(𝑋))2

= arg min

ℎ∈𝐻
E𝑊(E(𝑌 | 𝑋) − ℎ(𝑋))2 (15.1.2)

over some function space 𝐻. When sample weights 𝑊𝑖 are

omitted, they will be assumed to be equal to 1. This oracle

will typically correspond to some ML approach to solving this

weighted regression problem and we will be assuming that

such an oracle provides an estimate ℎ̂ that converges to ℎ0 at

some rate, with respect to the mean-squared-error metric, i.e.

∥ ℎ̂ − ℎ0∥𝐿2(𝑋) = 𝑟𝑛 → 0.

Single (S)-Learner Starting from the very simple identifica-

tion formula for the CATE in Equation (14.1.1), we can learn

the CATE by first invoking an ML regression method to con-

struct an estimate 𝑔̂ of the conditional expectation function

𝑔0(𝐷, 𝑍) := E[𝑌 | 𝐷, 𝑍], assuming that 𝑔0 lies in some function

space 𝐺. Then we can construct a model 𝜏̂ of the CATE by

invoking an ML regression method to construct an estimate

of the conditional expecation function E[𝑔̂(1, 𝑍) − 𝑔̂(0, 𝑍) | 𝑋],
over some function space 𝑇. Overall we arrive at the following

meta-learning algorithm:

Single Learner (S-Learner)

𝑔̂ := 𝑂𝐺({(𝐷𝑖 , 𝑍𝑖), 𝑌𝑖}𝑛𝑖=1
)

𝜏̂ := 𝑂𝑇

(
{𝑋𝑖 , 𝑔̂(1, 𝑍𝑖) − 𝑔̂(0, 𝑍𝑖)}𝑛𝑖=1

) (15.1.3)

Even if 𝑇 does not contain 𝜏0, as long as 𝑔0 ∈ 𝐺 and ∥ 𝑔̂ −
𝑔0∥𝐿2(𝐷,𝑍) → 0, the S-Learner estimate will be converging to

the best approximation of the CATE within the space 𝑇, i.e.

∥𝜏̂ − 𝜏∗∥𝐿2(𝑋)→ 0.

Two (T)-Learner Estimating a single regression model that

predicts the outcome 𝑌 from the treatment 𝐷 and the controls

𝑍, can overly regularize the treatment variable. Especially in

settings where the treatment has a small effect, many ML

algorithms will most probably shrink the treatment effect to

zero and prioritize the inclusion of other informative covariates

in the selected model. For this reason, it seems natural to weaken

this regularization bias on the treatment. This can be achieved
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1: An estimation strategy based on

running a regression of 𝑌𝐻(𝜇̂) on

𝑋, is referred to in the literature as

the Inverse Propensity Score (IPS)-

Learner, but we will omit more de-

tails on it.

by fitting two separate models, one model 𝑔̂𝑇 that estimates

the relationship between the outcome 𝑌 and the covariates 𝑍

within the treated group, i.e. 𝑔𝑇
0

:= E[𝑌 | 𝑍, 𝐷 = 1] and one

model 𝑔̂𝐶 that learns the same relationship within the control

group, i.e. 𝑔𝐶
0
− := E[𝑌 | 𝑍, 𝐷 = 0]. Then the CATE can be

estimated by invoking an ML regression method to construct

an estimate of the CEF E[𝑔̂𝑇(𝑍)− 𝑔̂𝐶(𝑍) | 𝑋]. Overall, we arrive

at the following meta-learning algorithm:

Two Learner (T-Learner)

𝑔̂𝐶 := 𝑂𝐺𝐶 ({𝑍𝑖 , 𝑌𝑖}𝑖∈{1,...,𝑛}:𝐷𝑖=0
)

𝑔̂𝑇 := 𝑂𝐺𝑇 ({𝑍𝑖 , 𝑌𝑖}𝑖∈{1,...,𝑛}:𝐷𝑖=1
)

𝜏̂ := 𝑂𝑇({𝑋𝑖 , 𝑔̂𝑇(𝑍𝑖) − 𝑔̂𝐶(𝑍𝑖)}𝑛𝑖=1
)

(15.1.4)

Similar to the S-Learner, as long as 𝑔𝐶
0
∈ 𝐺𝐶 and 𝑔𝑇

0
∈ 𝐺𝑇 , then

the result of the T-Learner will always be converging to 𝜏∗, i.e.

the best approximation of the CATE within 𝑇.

Doubly Robust (DR)-Learner The above approaches rely

fully on accurate outcome modelling. If we face settings where

the conditional counterfactual outcomes E[𝑌 | 𝐷 = 1, 𝑍] are

complicated functions that are hard to model and estimate, but

the CATE function 𝜏(𝑋) is relatively simple, the aforementioned

two meta-learners will suffer from large estimation errors in

𝑔̂ , 𝑔̂𝑇 , 𝑔̂𝐶 . If for instance, we are in a randomized controlled

trial and we know the propensity 𝜇0, then we also know that

the random variable 𝑌𝐻(𝜇0) satisfies

E[𝑌𝐻(𝜇0) | 𝑋] = E[E[𝑌𝐻(𝜇0) | 𝑍] | 𝑋]
= E[E[𝑌 | 𝐷 = 1, 𝑍] − E[𝑌 | 𝐷 = 0, 𝑍] | 𝑋]
= 𝜏(𝑋).

Thus when solving this regression problem we only need to

be accurately approximating the potentially simpler CATE

function, as opposed to the response functions under treatment

or control.
1

Beyond randomized control trials, the above approach is too

heavily dependent on constructing a good estimate 𝜇̂ of the

propensity score. Moreover, even for randomized control trials,

the latter method can have very large variance, due to divid-

ing the outcome 𝑌 by the inverse propensity. For this reasons,

it might be beneficial even when we care solely about mean
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2: For any estimate 𝑓 of a function

𝑓0, that takes as input some random

variable𝑊 , the fourth moment of

the prediction error ∥ 𝑓 − 𝑓0∥𝐿4(𝑋) is
defined as(

E𝑊 ( 𝑓 (𝑊) − 𝑓0(𝑊))4
)

1/4

and is a slightly strong measure

of performance that the root-mean-

squared-error, i.e.√
E𝑊 ( 𝑓 (𝑊) − 𝑓0(𝑊))2

.

3: In fact, one can always use the

slightly better error metric:(
E𝑋

[
E𝑊 [( 𝑓 (𝑊) − 𝑓 (𝑊))2 | 𝑋]2

] )
1/4

where 𝑋 is the set of variables that

enter the CATE function 𝜏. When

𝑋 is the empty set, as in the case

of average causal effects this boils

down to the mean squared error

and otherwise this requires better

control, on average, of the condi-

tional mean squared error of the

nuisance functions, conditional on

the variables𝑋 that enter the CATE

function.

squared error, to use the doubly robust approach, which com-

bines propensity and regression modelling and can reduce both

bias due to errors in estimating the propensity and variance

by dividing only the un-explained variation in the outcome by

the propensity. This leads to the doubly robust meta-learner

(we will describe its two-learner variant, which is advisable in

practice):

Doubly Robust Learner (DR-Learner)

𝑔̂𝐶 := 𝑂𝐺𝐶 ({𝑍𝑖 , 𝑌𝑖}𝑖∈{1,...,𝑛}:𝐷𝑖=0
)

𝑔̂𝑇 := 𝑂𝐺𝑇 ({𝑍𝑖 , 𝑌𝑖}𝑖∈{1,...,𝑛}:𝐷𝑖=1
)

𝜇̂ := 𝑂𝑀({𝑍𝑖 , 𝐷𝑖}𝑖∈{1,...,𝑛}) (15.1.5)

𝑔̂(𝐷, 𝑍) := 𝑔̂𝑇(𝑍)𝐷 + 𝑔̂𝐶(𝑍) (1 − 𝐷)
𝑌𝑖(𝜂̂) := 𝐻𝑖(𝜇̂) (𝑌𝑖 − 𝑔̂(𝐷𝑖 , 𝑍𝑖)) + 𝑔̂𝑇(𝑍𝑖) − 𝑔̂𝐶(𝑍𝑖)

𝜏̂ := 𝑂𝑇

(
{𝑋𝑖 , 𝑌𝑖(𝜂̂)}𝑛𝑖=1

)
The previous section can be seen as a special of this meta-learner,

where we use OLS as our regression oracle in the final step and

were we use cross-fitting when we estimate the first three steps

and calculate the proxy labels 𝑌̂𝑖 .

The DR-Learner inherits certain type of double robustness

properties that we have, even when analyzing the mean squared

error. In particular, suppose that we knew the true regression

functions 𝑔𝐶
0
, 𝑔𝑇

0
, 𝜇0 and based on some appropriate argument,

we could show that the regression oracle in the last step, when

ran with the ideal labels 𝑌(𝜂0), achieves a mean squared error

rate of the order of 𝑟2

𝑛 . Then, assuming 𝑔𝐶
0
∈ 𝐺𝐶 , 𝑔𝑇

0
∈ 𝐺𝑇 and

𝜇0 ∈ 𝑀, one can argue, under benign regularity conditions,

that the mean squared error of the DR-Learner, can be upper

bounded as:

E(𝜏̂(𝑋) − 𝜏∗(𝑋))2 ≲ 𝑟2

𝑛 + Error(𝑔̂)2 · Error(𝐻(𝜇̂))2

where the error of these nuisances can always be taken to

be the fourth moment of the prediction error
2

and under

further regularity conditions on the function space 𝑇 used in

the estimation for 𝜏, it can be taken to be the root-mean-squared-

error.
3

Thus as long as the product of the errors in modelling

the regression and the propensity function are small, then the

mean squared error for 𝜏̂ will not be significantly impacted

by these first stage estimation errors. For formal versions of

variants of such results, we defer the reader to the following

papers [2–6].
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Residual (R)-Learner If we know that the true CATE model

lies in a simple function space and even if we knew the true

nuisance parameters 𝜂0, the labels that are used in the final

stage of the DR-Learner can still have a large magnitude, due

to the division by the propensity. In settings were the overlap

assumption is almost violated at particular regions of the covari-

ate space, the regression labels 𝑌𝑖(𝜂0)will be taking very large

values in absolute magnitude. This can lead to a high-variance

estimate. For instance, if we knew that the treatment effect is

constant, then we are essentially assuming the partially linear

regression model and we shouldn’t be using the doubly robust

method, but rather the residual-on-residual method, which

minimizes the loss E(𝑌̂𝑖 − 𝜏𝐷̂𝑖)2, where 𝑌̂ = 𝑌 − E[𝑌 | 𝑍] and

𝐷̂ = 𝐷 − E[𝐷 | 𝑍]. Similarly, if we are willing to assume that

the CATE function is linear in some engineered features of only

the variables 𝑋, i.e. 𝛿(𝑍) = 𝜏(𝑋) = 𝛽′𝑝(𝑋), then we should

instead be estimating a linear interactive model, where we

interact the treatment with the engineered features and apply

the residualization apporach to arrive at the loss function

E(𝑌̂𝑖 − 𝛽′𝑝(𝑋) 𝐷̂𝑖)2

since 𝑝(𝑋)𝐷−E[𝑝(𝑋)𝐷 | 𝑍] = 𝑝(𝑋) (𝐷−E[𝐷 | 𝑍]) = 𝑝(𝑋) 𝐷̂.

Analogously, if we know that the high-dimensional CATE

function 𝛿0(𝑍) = E[𝑌(1) − 𝑌(0) | 𝑍], is only a function of the

variables 𝑋 , i.e. 𝛿0(𝑍) = 𝜏0(𝑋) and 𝜏0 lies in some simple space

𝑇, a lower variance loss function, than the doubly robust loss

function would be:

min

𝜏∈𝑇
E(𝑌̂𝑖 − 𝜏(𝑋)𝐷̂𝑖)2

As we already showed in Equation (14.3.4) in Section 14.3, under

the aforementioned assumptions we can write the regression

equation:

𝑌 = 𝜏0(𝑋)𝐷 + 𝑔0(𝑍) + 𝜖, E[𝜖 | 𝐷, 𝑍] = 0

Thus, we are faced with a non-linear regression equation, re-

gressing 𝑌̂ on 𝐷̂, 𝑋 , where we know that the CEF is of the form

E[𝑌̂ | 𝐷̂, 𝑋] = 𝜏(𝑋) 𝐷̂, for some function 𝜏 in some simple func-

tion space 𝑇. To estimate this regression problem, we should

thus minimize the square loss, over the space of such CEFs,

i.e.

min

𝜏∈𝑇
E(𝑌̂ − 𝜏(𝑋)𝐷̂)2, (15.1.6)

which is exactly the R-Learner loss.
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When taken to estimation, the residuals 𝑌̂, 𝐷̂ will be replaced

by the estimated residuals 𝑌̌, 𝐷̌, where 𝑌̌ = 𝑌 − ℎ̂(𝑍) and

𝐷̌ = 𝐷 − 𝜇̂(𝑍), with ℎ̂ being an estimate of the CEF E[𝑌 | 𝑍]
(e.g. one could use the two-learner based estimate

ℎ̂(𝑍) := 𝑔̂𝑇(𝑍) 𝜇̂(𝑍) + 𝑔̂𝐶(𝑍) (1 − 𝜇̂(𝑍)).

or a direct regression, regressing 𝑌 on 𝑍. Moreover, note that

minimizing the R-Learner loss, is equivalent to minimizing a

sample-weighted square loss, where the covariates are 𝑋, the

labels are 𝑌̂/𝐷̂ and the weights are 𝐷̂2
:

E(𝑌̂ − 𝜏(𝑋)𝐷̂)2 = E𝐷̂2 (𝑌̂/𝐷̂ − 𝜏(𝑋))2,

Thus the final step in the R-Learner also corresponds to a

sample-weighted regression oracle problem. This leads to the

following meta-learner algorithm:

Residual Learner (R-Learner)

ℎ̂ := 𝑂𝐻({𝑍𝑖 , 𝑌𝑖}𝑖∈{1,...,𝑛})
𝜇̂ := 𝑂𝑀({𝑍𝑖 , 𝐷𝑖}𝑖∈{1,...,𝑛})
𝑌̌𝑖 := 𝑌𝑖 − ℎ̂(𝑍𝑖)
𝐷̌𝑖 := 𝐷𝑖 − 𝜇̂(𝑍𝑖)

𝜏̂ := 𝑂𝑇

({
𝑋𝑖 , 𝑌̌𝑖/𝐷̌𝑖 , 𝐷̌

2

𝑖 )
}𝑛
𝑖=1

) (15.1.7)

Under the assumption that 𝛿0 = 𝜏0 ∈ 𝑇, and that ℎ0 ∈ 𝐻,

𝜇0 ∈ 𝑀, then the R-Learner converges to the true CATE 𝜏0.

Moreover, this approach inherits similar robustness properties

as the partialling out approach for the case of estimating average

causal effects. In particular, if we let 𝑟2

𝑛 denote the mean squared

error that the final regression oracle would have achieved had

we known the true nuisance parameters ℎ0, 𝜇0, then under

regularity conditions, one can show that:

E𝑋(𝜏̂(𝑋) − 𝜏0(𝑋))2 ≲ 𝑟2

𝑛 + Error(𝜇̂)4 + Error(𝜇̂)2 Error(ℎ̂)2

Unlike the DR-Learner, we see here that accurate estimation of

the propensity is more important and cannot be compensated

by more accurate estimation of the outcome regression problem.

Similar to the DR-Learner, the error function in the above claim

can always be taken to be the fourth moment of the prediction

error and under further restrictions on the function space 𝑇,

it can be taken to be the root-mean-squared-error. For formal

versions of this claim see [4, 6, 7].
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One may also wonder what does the R-Learner estimate when

the assumption that 𝛿0 = 𝜏0 or that 𝜏0 ∈ 𝑇 is violated. Unlike all

prior meta-learners, the R-Learner does not converge necessarily

to the best approximation 𝜏∗ of the CATE within 𝑇. For instance,

consider the extreme case where 𝑇 contains only constant

functions. Then we are estimating an average treatment effect

based on a partialling out approach, while the partial linear

response function does not hold and there exists treatment

effect heterogeneity. In this case, the partialling out approach

will not be converging to the average causal effect and similarly

for any 𝑇, the R-Learner will not be converging to 𝜏∗.

To understand the limit point of the R-Learner, let us examine the

R-Learner loss as defined in Equation (15.1.6). By construction, 𝜏̂
will be converging to the solution to that minimization problem.

As we have already argued, under conditional exogeneity, we

can always write 𝑌̂ = 𝛿0(𝑍)𝐷̂ + 𝜖, with E[𝜖 | 𝐷̂, 𝑍] = 0. Thus

we can re-write the R-Learner loss as:

E(𝑌̂ − 𝜏(𝑋)𝐷̂)2 = E(𝛿0(𝑍)𝐷̂ − 𝜏(𝑋)𝐷̂)2 + E𝜖2

= E

[
(𝛿0(𝑍) − 𝜏(𝑋))2 Var(𝐷 | 𝑍)

]
+ E𝜖2

where we used the fact that E[𝐷̂2 | 𝑍] = Var(𝐷 | 𝑍). Thus

minimizing the R-Learner loss is equivalent to minimizing

a treatment-variance-weighted square loss and the estimate

will be converging to the best treatment-variance-weighted

approximation of the high-dimensional CATE function, i.e.

𝜏̃ = arg min

𝜏∈𝑇
E

[
(𝛿0(𝑍) − 𝜏(𝑋))2 Var(𝐷 | 𝑍)

]
(15.1.8)

This solution is essentially putting more weight on regions of

the covariate space 𝑍, where the treatment was more randomly

assigned. If for instance parts of the population were almost

always treated or almost always not treated, then these parts

of the population will not be considered when constructing

the best approximation. We will refer to this solution as the

best overlap-weighted approximation, since it assigns weights to

parts of the population, dependent on the degree of "overlap"

(i.e. whether both treatments were observed for this part of

the population). For instance, suppose that 𝑇 is the space of

constant functions and that the treatment is randomly assigned

for some parts of the population and is essentially deterministic

for other parts. Then 𝜏̃ will recover the average treatment

effect of the subset of the population for which treatment was

randomly assigned. On the contrary, in this case the doubly

robust estimate will try to recover the average causal effect of

the overall population, but because of that it will inadvertently
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4: Note that the same wouldn’t be

true if we condition a subset 𝑋 of

𝑍:

𝜏𝑇
0
(𝑋) := E[𝑌(1) − 𝑌(0) | 𝑋, 𝐷 = 1]

= E[E[𝑌(1) − 𝑌(0) | 𝑍] | 𝑋, 𝐷 = 1]
= E[𝛿(𝑍) | 𝑋, 𝐷 = 1]
≠ E[𝛿(𝑍) | 𝑋] =: 𝜏0(𝑋)

be very high variance and unstable, since for some parts of the

population it barely ever sees one of the two treatments.

Cross (X)-Learner The Cross Learner tries to combine propen-

sity to improve on outcome modelling in a manner qualitatively

very different from the DR- or R-learner and not with the target

of reducing the sensitivity to errors in the nuisance models.

Rather it does so primarily motivated from an accuracy and
covariate-shift consideration. Moreover, it begins with a very dif-

ferent starting point and idea. As a first one realizes that the

high-dimensional CATE 𝛿0(𝑍) is the same, whether we mea-

sure it on the treated or on the control! In other words, the

Conditional Average Treatment Effect on the Treated (CATT)

is equal to the Conditional Average Treatment Effect on the

Control (CATC), unlike the average treatment effect, which can

be different due to different distributions of 𝑍 in treatment and

control. This can be easily seen as, by conditional exogeneity:

𝛿𝑇
0
(𝑍) := E[𝑌(1) − 𝑌(0) | 𝑍, 𝐷 = 1]

= E[𝑌(1) − 𝑌(0) | 𝑍] = 𝛿0(𝑍)

and similarly for 𝜏0
.
4

Moreover, when we try to measure the CATT, then we actually

observe the counterfactual under treatment and therefore we

do not need to impute this counterfactual outcome (e.g. by

learning 𝑔1

0
). Similarly for the CATC. Thus we can identify the

CATT and CATC as:

𝛿𝑇
0
(𝑍) = E[𝑌 − E[𝑌 | 𝑍, 𝐷 = 0] | 𝑍, 𝐷 = 1]

𝛿𝐶
0
(𝑍) = E[E[𝑌 | 𝑍, 𝐷 = 1] − 𝑌 | 𝑍, 𝐷 = 0]

This yields two ways of identifying the CATE 𝛿0(𝑍) and any

convex combination of these two solutions, would also be a

valid identification strategy for the CATE. This approach, allows

us to avoid having to model both response models well for all

regions of the covariate space (which would be the case for

the S-, T-, or DR-Learners). This can be powerfull if we know

that the CATE is a much simpler function to learn than a mean

counterfactual response model.

If we believe that the hard part is modelling the mean counter-

factual response under some treatment but not the treatment

effect, then we can use the following strategy: for parts of the

covariate space 𝑍, where we have more control data (i.e. 𝜇0(𝑍)
is small), we can use the CATT strategy, which only requires

estimating the mean counterfacutal response under control, i.e.
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Figure 15.1: DGP 1. Imbalanced

dataset were baseline response is

more complex than heterogeneous

effect.

Figure 15.2: DGP 1. Different CATE

estimates in the X-Learner. The leg-

end displays the mean squared er-

ror of each estimate.

E(𝑌 | 𝑍, 𝐷 = 0), but not under treatment. Of course, we still

have to learn the effect function using only the treated data,

which we don’t have that many in this part of 𝑍, but since we

believe that the effect function is simple, this is a more benign

problem. Similarly, if for parts of the covariate space 𝑍, we have

more treated data (i.e. 𝜇0(𝑍) is large), we can use the CATC strat-

egy, which only requires estimating the mean counterfactual

response under treatment, i.e. E(𝑌 | 𝑍, 𝐷 = 1), but not under

control. This motivates using the following convex combination

as our final identification formula for the CATE:

𝛿0(𝑍) = 𝛿𝑇
0
(𝑍) (1 − 𝜇0(𝑍)) + 𝛿𝐶

0
(𝑍)𝜇0(𝑍)

Subsequently, for any subset 𝑋 of 𝑍, we can use the fact that

𝜏0(𝑋) = E[𝛿0(𝑍) | 𝑋]. This identification strategy leads to the

following meta-learning estimation strategy:

Cross Learner (X-Learner)

𝑔̂𝐶 := 𝑂𝐺𝐶 ({𝑍𝑖 , 𝑌𝑖}𝑖∈{1,...,𝑛}:𝐷𝑖=0
)

𝑔̂𝑇 := 𝑂𝐺𝑇 ({𝑍𝑖 , 𝑌𝑖}𝑖∈{1,...,𝑛}:𝐷𝑖=1
)

𝜇̂ := 𝑂𝑀({𝑍𝑖 , 𝐷𝑖}𝑖∈{1,...,𝑛})
𝛿̂𝐶 := 𝑂Δ({𝑍𝑖 , 𝑔̂𝑇(𝑍𝑖) − 𝑌𝑖}𝑖∈{1,...,𝑛}:𝐷𝑖=0

)
𝛿̂𝑇 := 𝑂Δ({𝑍𝑖 , 𝑌𝑖 − 𝑔̂𝐶(𝑍𝑖)}𝑖∈{1,...,𝑛}:𝐷𝑖=1

)
𝛿̂𝑋(𝑍) := 𝛿̂𝑇(𝑍) (1 − 𝜇̂(𝑍)) + 𝛿̂𝐶(𝑍) 𝜇̂(𝑍)

𝜏̂ := 𝑂𝑇

({
𝑋𝑖 , 𝛿̂

𝑋(𝑍𝑖)
}𝑛
𝑖=1

)
(15.1.9)

Assuming that the function spaces used in the nuisance oracles

contain the true functions, the final step of the X-learner will

converge to the best approximation of the CATE 𝜏∗, within the

space 𝑇. Moreover, this estimation strategy can have substan-

tial benefits when the CATE function 𝛿0 is much simpler than

the response functions 𝑔𝐶
0
, 𝑔𝑇

0
and when there are substantial

imbalances in the treatment across the population (i.e. the

propensities substantially deviate from 1/2). The latter many

times arises in digital experimentation, where only a small

fraction of the population receives the treatment. In this case,

the response under control can be much more accurately esti-

mated. In fact, in many such settings we have a lot of historical

data, prior to running an experiment, where the treatment was

un-available and which can be used as auxiliary datasets for

learning the baseline response; with the small treated data from

the experiment only being used to estimate the heterogeneous

effect function 𝛿𝑇
0
.
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Example 15.1.1 (Imbalanced Dataset with Hard Baseline Re-

sponse and Simple CATE) As a stark example, consider

the case when 𝑍 = 𝑋 ∼ 𝑈[0, 1], treatment is very rare, i.e.

𝜇(𝑍) = .05, the treatment effect is constant, i.e. 𝛿0(𝑍) = .5 and

the baseline response is complex and contains a discontinuity:

𝑌 = .5𝐷 + .3𝟙{𝑍 ∈ [.6, .8]} + 𝑁(0, 𝜎 = .05),
𝐷 = Bernoulli(𝜇(𝑍) = .05)

(DGP 1)

In this case, the data that we collect, for 𝑛 = 500, are depicted

in Figure 15.7. If we use gradient boosted forest regression

to estimate the two response functions under treatment and

under control, we find that the 𝑔̂𝑇 response function is substan-

tially more regularized and the discontinuity is not learned,

due to the small sample size. On the other hand 𝑔̂𝐶 is much

more accurate and the discontinuity is learned due to the

large sample size. Subsequently, we see in Figure 15.2 that

the estimate based on the CATC identification strategy is

much less accurate than the one based on the CATT identifi-

cation strategy. Moreover, the X-Learner is putting almost all

the weight on the CATT estimate 𝛿̂𝑇 and is highly accurate

compared to 𝛿̂𝐶 . However, in this setting, we also find that

other strategies that also use propensity modelling (e.g the

R- or DR-Learners) also manage to correct the error in the

T-Learner regression models and achieve similar accuracy to

the X-Learner.

On the other hand, if the inductive bias that the CATE is

simpler than the response functions under either treatment

or control does not hold, then the superiority of the X-Learner

strategy as compared for instance to the T-learner strategy for

outcome modelling vanishes. For instance, if we instead have

an outcome model of:

𝑌 = .5𝟙{𝑍 ∈ [.6, .8]}𝐷 + .1 + 𝑁(0, 𝜎 = .05),
𝐷 = Bernoulli(𝜇(𝑍) = .05)

(DGP 2)

then all methods that only rely on outcome modelling fail and

methods that also combine propensity based identification

start to outperform (see Figure 15.4). Even more vivid is the

flip in performance if we further make the treatment more

prevalent than the baseline:

𝑌 = .5𝟙{𝑍 ∈ [.6, .8]}𝐷 + .1 + 𝑁(0, 𝜎 = .05),
𝐷 = Bernoulli(𝜇(𝑍) = .95)

(DGP 3)
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Figure 15.3: DGP 1. CATE esti-

mates (𝑛 = 500) from other meta-

learners. The legend displays the

mean squared error of each learner.

Figure 15.4: DGP 2. CATE estimates

(𝑛 = 500) from meta-learners,

when CATE is complex and base-

line simple. The legend displays the

mean squared error of each learner.

Figure 15.5: DGP 3. CATE estimates

(𝑛 = 500) from meta-learners,

when CATE is complex and base-

line simple and treatment very

prevalent. The legend displays the

mean squared error of each learner.

In this case it is more important to use the large amount of

treated data, since 𝜇(𝑍) = .95, not to learn the response func-

tion, but rather to learn the CATE function (see Figure 15.5).

In this case a T-Learner outcome modelling strategy and a

T-Learner based DR-Learner is a better option.

We conclude by noting that the reasoning in the cross learner

strategy can actually be used as a sub-process to improve out-

come modelling in all other learners. In particular, note that

the key advance of the cross learner is to observe than when

the treatment is very rare, then we should be estimating the

response 𝑔̂𝐶 under control and then estimating only the ef-

fect 𝛿̂𝑇 using the treatment data. In this case, we can also use

𝑔̂𝑇 = 𝑔̂𝐶 + 𝛿̂𝑇 as our estimate of the response under treatment.

Similarly, if the control group is very rare, then we should

be estimating the response 𝑔̂𝑇 under treatment and then esti-

mating only the effect 𝛿̂𝐶 using the control data. In this case,

again we can also use 𝑔̂𝐶 = 𝑔̂𝑇 − 𝛿̂𝐶 as our estimate of the

response under control. Moreover, we can locally blend these

two estimation strategies by weighting both estimates of the two

response functions using the propensity, i.e. putting a weight of

(1− 𝜇̂(𝑍)) to the first estimation strategy and a weight of 𝜇̂(𝑍) to
the second estimation strategy. This approach is an alterantive

outcome modelling process that can be used instead of the 𝑆

or 𝑇 learner approaches for learning the response functions

under the different treatments. In that respect, the X-Learner

outcome modelling strategy can be used in conjunction with

the DR- or the R-Learner approaches, if one wants to introduce

some robustness with respect to outcome modelling by incor-

prorating identification by propensity approaches. For instance,

in Figure 15.3, we also depict the CATE learned if we combine

the X-learner approach to outcome modelling with the doubly

robust correction (coined the DRX-Learner).

Qualitative Comparison and Guidelines

We present here a set of bullet points that can guide the reader

through the choosing among the different meta-learner strate-

gies, dependent on inductive biases about their setting:

▶ S/T-Learner: they heavily rely on correct outcome mod-

elling, trying to learn how the outcome relates to the

control co-variates 𝑍. If this estimation problem is hard

to learn, then they will have poor performance, especially

when the effect is a simple function and 𝑋 is much lower

dimensional than 𝑍. However, they can have very low
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variance and be more stable as they only depend on sim-

ple regression strategies. If one has to choose among the

two, then the T-Learner should be preferable, if both treat-

ments are sufficiently represented, since it avoids overly

regularizing the treatment, which reduces the bias of the

treatment effect estimate. If one of the two treatments is

rare, then the X-Learner should be more preferable than

the T-Learner.

▶ X-Learner: even if the X learner estimates a propensity,

the propensity is primarily used to select locally, which

outcome model is better and is not used to identify the

effect. Thus the X learner is essentially also only per-

forming outcome modelling. If we believe that the CATE

function is simpler than the response functions under

treatment or control, this outcome modelling estimation

strategy should be preferred. Otherwise, if we believe

that the CATE function is equally or more complex than

the response functions, then a T-Learner approach can

outperform an X-Learner approach. If we further believe

that learning any of these outcome processes could po-

tentially be a substantially harder task than learning the

propensity, then this method can be heavily biased. In that

case the DR-Learner or the R-Learner should be prefered.

However, the X learner reasoning can still be useful in

improving the outcome modelling part of the DR or R

learners.

▶ DR-Learner: possesses doubly robust properties, in that

the mean squared error of the CATE is small if either the

outcome model is learned accurately or the propensity

model. It is particularly useful in learning projections of

the CATE on simpler function spaces or on small subsets

𝑋 of the control variables 𝑍. If 𝑋 is very small compared

to 𝑍, then even the X-Learner needs to accurately learn

the complex effect function 𝛿0(𝑍) accurately. However,

the DR-Learner can learn the simpler CATE 𝜏0(𝑋), if the

propensity model is accurately learned. For instance, we

saw in DGP 3 in Example 15.1.1, that when the CATE func-

tion was complex, then methods such as the DR-Learner

that incorporate propensity modelling are more accurate.

However, contrary to the S/T/X-learners, when the true

data generating process has extreme propensities in parts

of the covariate space (i.e. parts of the population are

almost deterministically either treated or not treated),

then the DR-Learner can have high variance and become

unstable. On the other hand the R-Learner will be ex-

trapolating the CATE from nearby regions where there
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is more overlap and assuming the CATE model space is

smooth enough, such model-based extrapolation can be

quite accurate.

▶ R-Learner: posseses insensitivity properties related to

Neyman orthogonality, in that the impact of errors in the

propensity model or the outcome model impact the CATE

model only in a second order manner. In particular, if the

outcome model is wrong, but the propensity model is

very accurate, the CATE will be highly accurate. However,

it is more heavily relying on moderately accurate propen-

sity modelling, unlike the DR-Learner. If for instance the

outcome model is perfect, but the propensity model is

very wrong, then the DR-Learner will be highly accurate

but the R-Learner will not be. On the positive side, the

R-Learner is much more stable than the DR-Learner in

the presence of extreme propensities, as it does not divide

by the propensity score when constructing the regression

labels. The reason that it can bypass that is that it inher-

ently estimates only an overlap-weighted projection of the

CATE and not the true projection of the high-dimensional

CATE 𝛿0, when the CATE model is either mis-specified

or does not solely depend on 𝑋 and not on the larger set

of covariates 𝑍. In both cases the DR-Learner converges

to the true CATE, while the R-Learner can potentially

ignore large parts of the population to reduce its vari-

ance; introducing bias and extrapolating the CATE from

nearby highly overlapping regions. For instance, we show

that in the case of DGP 1 in Example 15.1.1 the R-Learner

was out-performing the DR-Learner, since the treatment

effect was constant and the propensity very small. The

R-Learner should be prefered to the DR-Learner when

such overlap weighted projections are acceptable within

the application context and when we believe we have

a relatively accurate propensity model. In principle, a

similar variance reduction can also be performed for the

DR-Learner, by multiplying the DR-Learner loss with

sample weights 𝑊 = Var(𝐷 | 𝑍)2, which would then

avoid dividing by the propensity and would converge to

an overlap weighted projection of the CATE 𝛿0, with the

aforementioned sample weights, while preserving the

double robust nature of the estimation (i.e. that errors

in propensity can be compensated by more accurate es-

timation in the outcome model and vice versa) (see e.g.

[8]).

All-in-all, one should note that there is no clear winner among

the X-, R- and DR-Learner methods and each can potentially be
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the best performer in different contexts. The above discussion

gives a high-level strategy of which method to use dependent

on which types of phenomena one should be expecting to arise

in their data. In the next section we give a more data-driven

selection among these methods using out-of-sample scoring

and ensembling.

Remark 15.1.1 (Guarding for Overfitting with Cross-fitting)

To avoid having to worry about overfitted estimators, all the

first stage nuisance models across all the meta-learners should

preferably be estimated in a cross-fitting manner (i.e., the

models 𝑔̂ , 𝑔̂𝐶 , 𝑔̂𝑇 , 𝜇̂, ℎ̂) while the CATE models (i.e., 𝜏̂, 𝛿̂𝐶 , 𝛿̂𝑇)

should be estimated using all the samples.

Remark 15.1.2 (Explainability and Interpretability) An im-

portant side benefit of the meta-learning approach to CATE

estimation is that in the end we end up with an ML regression

model that represents our estimate of the CATE function.

Even though this regression model can be quite complicated

(e.g. a random forest, a gradient boosted forest or a neural

network), we can apply the multitude of interpretability ap-

proaches in machine learning to interpret the learned model.

For instance, we can summarize how different features change

the value of the CATE model via the widely used SHAP val-

ues [9] or approximate locally the CATE model with simpler

linear models based on the widely used LIME framework.

Finally, we can invoke distillation methods that fit simpler and

easy to visualize models using the learned model predictions

as labels. For instance, we can train a shallow binary tree

regression model that approximates the CATE model predic-

tions and then visualize the learned tree. For more elaborate

treatment of interpretability methods in machine learning

see [10].

Guarding for Covariate Shift

When machine learning models are evaluated on a different

population of covariates than the one that they were trained on,

then an important finite sample consideration is deterioration

of their performance due to the covariate shift. Such population

mis-match between training and evaluation typically arises

when we employ ML algorithms within a CATE estimation.

For instance, in the T-Learner we train an ML model on the

treated datapoints and then we evaluate it on all the datapoints.
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Similarly, in the X-Learner we train a CATE model on the treated

points and then we evaluate it on all the datapoints.

In such settings, we should only expect the oracle ML model to

have small mean squared error with respect to the distribution

of its training data and with respect to the best approximation

of the CEF, where the approximation error is calculated with

respect to the training data. For instance, suppose that we

estimate a regression model ℎ̂ that takes as input random

variables𝑋 and predicts a variable𝑌, with sample weights𝑊 , by

invoking an ML regression oracle as defined in Equation (15.1.2).

Assuming that the CEF ℎ∗ := E(𝑌 | 𝑋) does not change between

train and evaluation data and letting 𝐷𝑡 denote the distribution

of 𝑋 in the training data and 𝐷𝑒 in the evaluation data, then

our regression estimate satisfies that:

E𝑋∼𝐷𝑡𝑊(ℎ̂(𝑋) − ℎ0(𝑋))2 ≤ 𝑟𝑛

where ℎ0 = arg minℎ∈𝐻 E𝑋∼𝐷𝑡𝑊(ℎ∗(𝑋) − ℎ(𝑋))2. Since we eval-

uate this regression model on a different population, we would

typically care about the following mean squared error:

E𝑋∼𝐷𝑒𝑊𝑒(ℎ̂(𝑋) − ℎ∗(𝑋))2

with some set of weights𝑊𝑒 that depend on some downstream

use of the model.

Example 15.1.2 (Covariate Shift in X-Learner) In the context of

the X-Learner, we train a model 𝛿̂𝑇 on the treated data and then

we use it to calculate 𝛿̂(𝑍) = 𝛿̂𝑇(𝑍) (1 − 𝜇(𝑍)) + 𝛿̂𝐶(𝑍)𝜇(𝑍)
on all the data points. Thus in this case, when measuring the

quality of the downstream CATE estimate 𝜏̂ in the final step

of the X-Learner, we care about the quality of 𝛿̂𝑇 as measured

by the metric:

E𝑍(1 − 𝜇(𝑍))2(𝛿̂𝑇(𝑍) − 𝛿0(𝑍))2

On the contrary, the oracle for 𝛿̂𝑇 would be guaranteeing:

E𝑍 |𝐷=1
(𝛿̂𝑇(𝑍) − 𝛿̃0(𝑍))2

where 𝛿̃0 = arg min𝛿∈Δ E𝑍 |𝐷=1
(𝛿0(𝑍) − 𝛿(𝑍))2.

There are two sources of discrepancy: first the approximation

error can be substantially different if we use the best approxi-

mation with respect to a different distribution and second the

mean squared error is measured with respect to the wrong

distribution. If the true CEF ℎ0 lies in the function space𝐻, then
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the first problem vanishes (though in finite samples and with

some growing sieve space, we should always expect some finite

sample approximation bias). Simiarly, if we denote with 𝑝𝑡 the

density of 𝑋 under𝐷𝑡 and 𝑝𝑒 under𝐷𝑒 , then if the density ratio

𝑝𝑒(𝑋)/𝑝𝑡(𝑋) is upper and lower bounded by some constants

[𝑐, 𝐶], then we always have that:

E𝑋∼𝐷𝑒𝑊𝑒(ℎ(𝑋) − ℎ0(𝑋))2 = E𝑋∼𝐷𝑡
𝑝𝑒(𝑋)
𝑝𝑡(𝑋)

𝑊𝑒(ℎ(𝑋) − ℎ0(𝑋))2

∈ [𝑐, 𝐶] · E𝑋∼𝐷𝑡𝑊𝑒(ℎ(𝑋) − ℎ0(𝑋))2

Thus even if we don’t take any measures to address the co-

variate shift, by minimizing the squared error under the training

distribution, we are approximately minimizing the error under

the evaluation distribution. However, these constants can be

quite large in practice and the magnitude of the discrepancy

can be comparable to the sample size.

For these reasons a large literature in machine learning has

focused on addressing such co-variate shift problems by chang-

ing how we train the model, when we know what the target

evaluation distribution or metric will be. In its simplest form,

one can instead optimize for the density ratio weighted error,

i.e.:

E𝑋∼𝐷𝑡
𝑝𝑒(𝑋)
𝑝𝑡(𝑋)

𝑊𝑒(ℎ(𝑋) − ℎ0(𝑋))2

Noting also that

𝑝𝑒 (𝑋)
𝑝𝑡 (𝑋) =

𝑝(𝑋 |𝑒)
𝑝(𝑋 |𝑡) =

𝑝(𝑒 |𝑋)𝑝(𝑡)
𝑝(𝑡 |𝑋)𝑝(𝑡) , the above is equiva-

lent to minimizing:

E𝑋∼𝐷𝑡
𝑝(𝑒 | 𝑋)
𝑝(𝑡 | 𝑋)𝑊𝑒(ℎ(𝑋) − ℎ0(𝑋))2

which requires solving two classification problems (i.e. predict-

ing the probability that a sample is in population 𝑒 given 𝑋

and predicting whether the sample is in population 𝑡 given 𝑋,

using the union of the populations).

Example 15.1.3 (Covariate Shift in X-Learner (continued))

Going back to our X-Learner example, we have 𝑝(𝑒 | 𝑍) = 1

(since we evaluate on all the population) and 𝑝(𝑡 | 𝑍) = 𝜇0(𝑍)
(since we train only on the training population). Moreover,

we care about evaluation weights𝑊𝑒 = (1 − 𝜇̂(𝑍))2. Thus it
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Figure 15.6: DGP 3. CATE estimates

(𝑛 = 500) from meta-learners in

adapted X-Learner, with co-variate

shift corrections.

would potentially be better in finite samples if one optimizes:

E𝑍 |𝐷=1

1

𝜇̂(𝑍) (1 − 𝜇̂(𝑍))
2(𝛿̂𝑇(𝑍) − 𝛿̃0(𝑍))2

In other words, calling the ML oracle when training 𝛿̂𝑇 with

sample weights𝑊 = 1

𝜇̂(𝑍) (1 − 𝜇̂(𝑍))
2
.

For instance, if we employ such co-variate shift techniques in

DGP 3 from Example 15.1.1, then we find that the performance

of the Domain Adapted X-Learner (DAX-Learner) is restored

(see Figure 15.6).

Analogous finite sample corrections can be taken throughout

the meta-learner algorithms by first working out what is the

target evaluation population and metric we care about and

changing the training of the ML model appropriately.

Covariate shift techniques when overlap fails. Beyond this

simple approach of density weighting, many other ML methods

have been developed in the literature to guard against covariate

shift. One advantage of many of these alternative methods,

is that they are applicable even when there is lack of overlap

(i.e. when the density ratio can be unbounded or zero). For

instance, one large class of covariate shift approaches within the

context of neural network training, makes the assumption that

overlap holds on some latent representation space 𝜙(𝑋) and

not on the observed covariate space 𝑋 and that the conditional

expectation function can be written as a function of these latent

variables, i.e. E(𝑌 | 𝑋) ≈ E(𝑌 | 𝜙(𝑋)). In this case, one can

train a neural network architecture where the first few layers

of the neural network are used to construct the mapping 𝜙(𝑋)
and the subsequent layers are used to construct E(𝑌 | 𝜙(𝑋)).
Subsequently a distribution distance measure is introduced as

a regularizer, that measures the distribution distance of 𝜙(𝑋)
between samples that stem from the training and evaluation

population. A popular metric is a variant of the Wasserstein

distance. In this manner, we are trying to construct a latent

representation that has approximately the same distribution

under the two populations and which predicts well the target

𝑌.

Shared representation learning with neural networks. In the

context of CATE estimation, the latter approach was utilized by

[11, 12] within the T-Learner framework for outcome modelling.

In particular, the first few layers of the network are used to

represent 𝜙(𝑍), which then is used to represent both 𝑔𝑇
0

and
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𝑔𝐶

𝑔𝑇
…

…

…

ΦZ

D

D = 0

D = 1

𝑌 − 𝑔𝐶 𝑍
2

𝑌 − 𝑔𝑇 𝑍
2

dist 𝑝Φ|𝐷=0, 𝑝Φ|𝐷=1

Figure 15.7: Counterfactual regret

network of [11, 12], to guard against

covariate shift in the T-Learner.

𝑔𝐶
0

. Moreover, a wasserstein penalty is introduced so that the

distribution of 𝜙(𝑍) is similar between the treated and control

population. The resulting method is typically referred to as the

CFR-Net. If one believes that their setting satisfies this inductive

bias, i.e. that there exists a latent representation that is sufficient

for the CEF of the outcome and in which overlap holds, then

this approach can be used for better outcome modelling within

the context of any meta-learner. For instance, one can use the

CFR-Net together with the DR- or R- learners for estimating

𝑔𝑇
0
, 𝑔𝐶

0
and hence also 𝑔0 and ℎ̂ (potentially using the same

shared representation, when estimating the propensity; to avoid

extreme propensities). See also [13] for the empirical evaluation

of variants of such neural network approaches, combined with

doubly robust learning.

Example 15.1.4 (Meta-Learners in the 401(k) Example) We

applied each of the meta-learner models to estimate the CATE

in the 401(k) example. We estimated a CATE model that uses

all the available variables for heterogeneity (i.e. 𝑋 = 𝑍) and

used gradient boosted forests (based on the xgboost library)

as oracle regression models for each step of each meta-learner.

We depict below the CATE predictions of each of the meta-

learner models as a function of income (x-axis), when all other

features are fixed to their overall median value.
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Figure 15.8: CATE predictions of

different meta-learners in the 401k

example. Gradient boosted forests

(via the xgboost library) were used

as ML oracles for regression and

classification. The CATE is pre-

dicted on a grid of income points,

corresponding to equally spaced

income quantiles. All other covari-

ates were imputed at their median

values. For comparison, each plot

also displays the doubly robust best

linear predictor of the CATE with 5-

95% confidence intervals on a sim-

ple linear form of engineered fea-

tures of the income.

Subsequently, we investigate for interpretability reasons, the

main factors that are driving the predictions of the DR-Learner

model. We do this by fitting a simple shallow binary regres-

sion tree on the predictions of the model. We find that the

model’s CATE predictions are primarily driven by income

and age factors. In particular, the model finds that 401(k)

eligibility has the lowest effect (≈ $6𝑘) in net financial assets

for low income (≲ $39𝑘) and younger people (< 59 years),

while it has the highest effect (≈ $13𝑘) for high income people

(≳ $68𝑘).
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We also depict the SHAP values for each feature in the CATE

model, that identifies the directionality and magnitude of the

change that each feature drives in the model’s output. We

again identify that the main factors that drive variation in the

output of the DR-Learner CATE model are income and age.

We find that even though we did not hard-code income or age

as factors of effect heterogeneity, the generic ML approach

identified these two factors as the key drivers; a conclusion

that is inline with domain knowledge.

15.2 Scoring for CATE Model Selection

and Ensembling

The previous section gave an overview of how to qualitatively

select among the different meta-learning strategies. Here we

discuss how one can automate the process of selection using out-

of-sample scoring and moreover how to potentially ensemble

the models that come out of different estimation strategies into

a single CATE model. In this section, we envision that the user

has split their data into a training and scoring set and based

on the training set they have fitted a set of candidate CATE

models 𝑇 := {𝜏1, . . . , 𝜏𝑀}. These models could correspond to

the result of the different meta-learning strategies and with

different regression style oracles. For instance, 𝜏1 could be the

result of an X-Learner with random forest regression oracles,
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𝜏2 the result of an X-Learner with gradient boosted regression

oracles, 𝜏3 the result of the DR-Learner with linear/logistic

model oracles.

Let 𝑛 denote the size of the scoring set. Our goal is to be able to

use the scoring set in order to evaluate which of these𝑀 models

is more accurate (with confidence) and to device approaches to

select a single model 𝜏∗ that could either correspond to one of

the models 𝑇 or to an ensemble of these models with weights

(𝑤1, . . . , 𝑤𝑀), such that 𝜏∗(𝑋) =
∑𝑀
𝑖=1
𝑤𝑖𝜏𝑖(𝑋). Such a model 𝜏∗

should ideally be competing with the best model in 𝑇, i.e., with

high probability:

E(𝜏∗(𝑋) − 𝜏0(𝑋))2 ≤
𝑀

min

𝑗=1

E(𝜏𝑗(𝑋) − 𝜏0(𝑋))2 + 𝜖(𝑛, 𝑀)

(15.2.1)

for some error function 𝜖(𝑛, 𝑀) that should decay fast to zero

as a function of 𝑛 and should grow slowly with the number

of candidate models 𝑀. We can use again the doubly robust

outcome approach, viewing the problem as a regression prob-

lem with the doubly robust proxy outcomes 𝑌𝑖(𝜂̂) as the labels

and utilize techniques from model scoring, ensembling, model

selection and stacking for regression problems.

Comparing Models with Confidence

We can use the doubly robust loss:

𝐿̂𝐷𝑅(𝜏; 𝜂̂) := 𝔼𝑛(𝑌(𝜂̂) − 𝜏(𝑋))2 (15.2.2)

as a quality score for each of the candidate models. Since we care

about selecting among the models in 𝑇, we primarily care about

choosing a score function that orders the models accurately.

Hence, we primarily care that differences in the score between

two models, i.e.:

𝛿̂𝑖 , 𝑗(𝜂̂) = 𝐿̂𝐷𝑅(𝜏𝑖 ; 𝜂̂) − 𝐿̂𝐷𝑅(𝜏𝑗 ; 𝜂̂), (15.2.3)

approximate well differences in mean squared error, i.e.:

𝛿∗𝑖 , 𝑗 = E(𝜏𝑖(𝑋) − 𝜏0(𝑋))2 − E(𝜏𝑗(𝑋) − 𝜏0(𝑋))2 (15.2.4)
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5: Prove this as an exercise.

6: Prove this as an exercise.

7: Prove this as an exercise.

8: A similar theorem also holds for

the case of cross-fitted estimates.

In practice, one can either use the

nuisance estimates that were con-

structed on the training set, which

was also used to construct the

functions {𝜏1 , . . . , 𝜏𝑀} or perform

cross-fitting within the scoring set.

Consider the population analogues of the score and differences

in the score, i.e.:

𝐿𝐷𝑅(𝜏;𝜂) := E(𝑌(𝜂) − 𝜏(𝑋))2 (15.2.5)

𝛿𝑖 , 𝑗(𝜂) := 𝐿𝐷𝑅(𝜏𝑖 ;𝜂) − 𝐿𝐷𝑅(𝜏𝑗 ;𝜂) (15.2.6)

Since E[𝑌(𝜂0) | 𝑋] = 𝜏0(𝑋), we have that:
5

𝛿𝑖 , 𝑗(𝜂0) = 𝛿∗𝑖 , 𝑗 (15.2.7)

Moreover, note that the population difference at the estimate 𝜂̂
satisfies (by simply expanding the squares):

𝛿𝑖 , 𝑗(𝜂̂) = E[𝜏𝑖(𝑋)2 − 𝜏𝑗(𝑋)2 − 2𝑌(𝜂̂) (𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))]
= E[𝜏𝑖(𝑋)2 − 𝜏𝑗(𝑋)2 − 2 E[𝑌(𝜂̂) | 𝑋] (𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))]

Thus the error in the model comparison due to the error in the

estimate 𝜂̂ is:

𝛿𝑖 , 𝑗(𝜂̂) − 𝛿𝑖 , 𝑗(𝜂0) = 2 E[E[𝑌(𝜂0) − 𝑌(𝜂̂) | 𝑋] (𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))]

We see that a good scoring rule, should be using proxy labels

that have small bias, i.e.:

bias(𝑋; 𝜂̂) := E[𝑌(𝜂0) − 𝑌(𝜂̂) | 𝑋] (15.2.8)

The doubly robust proxy labels exactly achieve this property. In

particular, we can show based on results in prior sections:
6

bias(𝑋; 𝜂̂) = (𝐻(𝜇0) − 𝐻(𝜇̂)) (𝑔0(𝐷, 𝑍) − 𝑔̂(𝐷, 𝑍)) (15.2.9)

Thus we derived that the error in the comparison between

model 𝜏𝑖 and model 𝜏𝑗 , due to the estimation error in 𝜂̂ is:

2 E[(𝐻(𝜇0) − 𝐻(𝜇̂)) (𝑔0(𝐷, 𝑍) − 𝑔̂(𝐷, 𝑍)) (𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))]

This has doubly robust properties, i.e. if either 𝐻(𝜇̂) is accurate

or 𝑔̂ is accurate, then the comparison between the two models

will be accurate. Moreover, the difference in scores also satisfies

the Neyman orthogonality property:
7

𝜕𝜂𝛿𝑖 , 𝑗(𝜂0) = 0 (15.2.10)

and since 𝛿̂𝑖 , 𝑗(𝜂) is the empirical analogue of 𝛿𝑖 , 𝑗(𝜂), we can apply

the general framework of Neyman orthogonality to deduce that

the score difference estimate 𝛿̂𝑖 , 𝑗(𝜂̂) is root-𝑛 asymptotically

normal:
8
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Theorem 15.2.1 Let 𝜈𝑖 𝑗(𝑋) = 𝜏𝑖(𝑋) − 𝜏𝑗(𝑋) and suppose that
𝔼𝑛𝜈𝑖 𝑗(𝑋)2 ≥ 𝑐 for some constant 𝑐 > 0 and let 𝑛 grow to infinity.
As long as 𝜇̂ and 𝑔̂ are estimated on a separate sample and satisfy
that:
√
𝑛E[(𝐻(𝜇0) − 𝐻(𝜇̂)) (𝑔0(𝐷, 𝑍) − 𝑔̂(𝐷, 𝑍)) 𝜈𝑖 𝑗(𝑋)] ≈ 0

and both nuisance functions are consistent, i.e.:

∥𝜇̂ − 𝜇0∥𝐿2 + ∥ 𝑔̂ − 𝑔0∥𝐿2 ≈ 0 (15.2.11)

Then the estimation error in the nuisance functions 𝜇̂, 𝜂̂, does not
have a first order effect in the estimation error of the score difference
between two models:
√
𝑛(𝛿̂𝑖 , 𝑗(𝜂̂) − 𝛿∗𝑖 , 𝑗) ≈

√
𝑛𝔼𝑛(𝑌(𝜂0) − 𝜏𝑖(𝑋))2 − (𝑌(𝜂0) − 𝜏𝑗(𝑋))2

Consequently, the estimate 𝛿̂𝑖 , 𝑗 concentrates in a 1/
√
𝑛 neigborhood

of 𝛿∗
𝑖 , 𝑗

with deviations controlled by the Gaussian law:

√
𝑛(𝛿̂𝑖 , 𝑗(𝜂̂) − 𝛿∗𝑖 , 𝑗)

𝑎∼ 𝑁(0, V) (15.2.12)

where:

V := E

(
(𝑌(𝜂0) − 𝜏𝑖(𝑋))2 − (𝑌(𝜂0) − 𝜏𝑗(𝑋))2 − 𝛿∗𝑖 , 𝑗

)
2

Moreover, confidence intervals on the performance difference between
two models can be constructed as:

P

(
𝛿∗𝑖 , 𝑗 ∈

[
𝛿̂𝑖 , 𝑗(𝜂̂) ± 𝑐

√
V̂/𝑛

] )
≈ 1 − 𝛼 (15.2.13)

where 𝑐 is the (1−𝛼/2)-quantile of the standard normal distribution
and

V̂ := 𝔼𝑛

(
(𝑌(𝜂̂) − 𝜏𝑖(𝑋))2 − (𝑌(𝜂̂) − 𝜏𝑗(𝑋))2 − 𝛿̂𝑖 , 𝑗(𝜂̂)

)
2

The above theorem can also directly be used to construct

Remark 15.2.1 (Sample-dependent base models) The assump-

tion that 𝔼𝑛𝜈𝑖 𝑗(𝑋)2 is some non-zero constant 𝑐 independent

of 𝑛 required so that the variance 𝑉 is non-zero. In practice,

the candidate models will also be changing with 𝑛 as we will

be growing the sample size of the training set together with

the scoring set. As the size of the training set converges to

infinity it is highly probable that 𝑐 will be converging to zero,
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in which case 𝑉 will also be converging to zero. The above

theorem allows one to compare models that are distinct in

their average predictions by at least some constant. If we want

to be comparing models whose distinctness (i.e. E𝜈𝑖 𝑗(𝑋)2)

shrinks with the sample size, then we need to be more careful

in the asymptotic normal approximation. In this case, it is

more appropriate to consider the asymptotic properties of

the self-normalized quanity:√
𝑛

𝑉𝑛
(𝛿̂𝑖 , 𝑗(𝜂̂) − 𝛿∗𝑖 , 𝑗),

where 𝑉𝑛 is now allowed to depend on 𝑛, since 𝜏𝑖 , 𝜏𝑗 are

allowed to depend on 𝑛. In this case, to ignore the error due

to 𝜂̂ we would need that:√
𝑛

𝑉𝑛
E[(𝐻(𝜇0) − 𝐻(𝜇̂)) (𝑔0(𝐷, 𝑍) − 𝑔̂(𝐷, 𝑍)) 𝜈𝑖 𝑗(𝑋)] ≈ 0

As we show in Appendix 15.A:

𝑉𝑛 ≥ 4E𝜈𝑖 𝑗(𝑋)2 Var(𝑌(𝜂0) | 𝑋)

Thus if we assume that Var(𝑌(𝜂0) | 𝑋) ≥ 𝑐 > 0, then 𝑉𝑛 ≥
4𝑐∥𝜈𝑖 𝑗 ∥2𝐿2

and it suffices that:

√
𝑛E

[
(𝐻(𝜇0) − 𝐻(𝜇̂)) (𝑔0(𝐷, 𝑍) − 𝑔̂(𝐷, 𝑍))

𝜈𝑖 𝑗(𝑋)
∥𝜈𝑖 𝑗 ∥𝐿2

]
≈ 0

If

��𝜈𝑖 𝑗(𝑋)�� ≤ 𝐶∥𝜈𝑖 𝑗 ∥𝐿2 almost surely, then the above would

hold under the standard condition that:

√
𝑛∥𝐻(𝜇0) − 𝐻(𝜇̂)∥𝐿2 ∥𝑔0 − 𝑔̂∥𝐿2 ≈ 0

Even when this condition does not hold, by an application of

the Cauchy-Schwarz inequality it suffices that:

√
𝑛

√
E [(𝐻(𝜇0) − 𝐻(𝜇̂))2 (𝑔0(𝐷, 𝑍) − 𝑔̂(𝐷, 𝑍))2] ≈ 0

which would hold if:

√
𝑛∥𝐻(𝜇0) − 𝐻(𝜇̂)∥𝐿4 ∥𝑔0 − 𝑔̂∥𝐿4 ≈ 0 (15.2.14)

Moreover, for the confidence interval to be valid, we would

also need that:

|V − V̂|
V̂
≈ 0 (15.2.15)
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If the denominator is lower bounded by a constant, the above

holds under benign regularity conditions. However, if we

consider models whose separation shrinks at some rate 𝜎2

𝑛 ,

we can enforce the same rate of shrinkage on our estimate,

of the variance, in which case we would need the estimation

error in the variance to shrink faster than 𝜎2

𝑛 . Thus we can

only consider comparison of models that are separated by

at least some amount that dominates the error we expect in

our variance estimate. This separation would always be of

larger order than 1/𝑛. However, how small we can take this

rate also depends on rates of convergence of our nuisance

estimates individually and not just their product.

Remark 15.2.2 (Normalized Interpretable DR-Score) The

loss 𝐿̂𝐷𝑅(𝜏; 𝜂̂) might not be very interpretable in practice

as the result depends on the unobserved heterogeneity of

the outcome and on the units of the outcome. As a more

interpretable performance metric we can consider comparing

the loss of any candidate model as compared to the loss of

the best constant effect model fitted on the training sample.

Let 𝜏̂𝑐 denote the constant effect model that always outputs

the estimate 𝜃̂ of the average treatment effect, estimated on

the training data. Then we can define the normalized score:

𝑆̂(𝜏; 𝜂̂) = 𝐿̂𝐷𝑅(𝜏̂𝑐 ; 𝜂̂) − 𝐿̂𝐷𝑅(𝜏; 𝜂̂)
𝐿̂𝐷𝑅(𝜏̂𝑐 ; 𝜂̂)

(15.2.16)

This can be interpreted as a relative improvement in perfor-

mance over a constant model and is a number in [−∞, 1]. A

larger score hints at a better CATE model. Moreover, for any

reasonable model model this score will be a non-negative

number in [0, 1].

Competing with the Best Model

The doubly robust loss can also be used for constructin an

ensemble 𝜏∗ that competes with the best model in 𝑇. The

simplest approach would be to choose the model with the best

score, i.e.:

𝜏∗ = arg min

𝜏∈𝑇
𝐿̂𝐷𝑅(𝜏; 𝜂̂) (15.2.17)
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9: This is mathematically equiva-

lent to the BLP approach we de-

scribed in the first section of this

chapter, albeit using the predictions

of the base CATE models as the en-

gineered features.

Such a model satisfies the oracle performance guarantee in

Equation (15.2.1) with (see e.g. [4])

𝜖(𝑛, 𝑀) ≲
√

log(𝑀)
𝑛

+ ∥𝐻(𝜇0) − 𝐻(𝜇̂)∥𝐿2 ∥𝑔0 − 𝑔̂∥𝐿2

The leading term in this result is unfortunate, since it does not

decay fast with the sample size 𝑛, i.e. as 1/𝑛. For instance, for

parametric base models, we would expect the base models to

have RMSE performance of ≲ 1/𝑛, in which case the above

1/
√
𝑛 rate becomes a dominant term.

One problem with this approach is the non-convexity of the

space of models over which we are optimizing (i.e. optimizing

over singleton models). This non-convexity can be alleviate by

stacking approaches that convexify the optimization space over

which we optimize and minimize the doubly robust loss over

linear combinations of the base cate models, i.e.:

𝜏∗ :=

𝑀∑
𝑖=1

𝑤∗𝑖𝜏𝑖 , 𝑤∗ := arg min

𝑤∈𝑊
𝐿̂𝐷𝑅

(
𝑀∑
𝑖=1

𝑤𝑖𝜏𝑖 ; 𝜂̂

)
(15.2.18)

where 𝑊 could either be ℝ𝑀
, in which case this is simply

OLS regression with covariates 𝜏1(𝑋), . . . , 𝜏𝑀(𝑋) and target

outcome 𝑌(𝜂̂),9 or 𝑊 could be the 𝑀-dimensional simplex,

i.e.

𝑊 :=

{
𝑤 ∈ ℝ𝑀

: 𝑤𝑖 ≥ 0,
𝑀∑
𝑖=1

𝑤𝑖 = 1

}
,

in which case this corresponds to a convex regression with the

same covariates and outcome as in the OLS case. In the absence

of further assumptions on the quality of the base models 𝜏𝑖 ,
the above yield a model 𝜏∗ that satisfies the oracle performance

guarantee in Equation (15.2.1) with (see e.g. [4, 14])

𝜖(𝑛, 𝑀) ≲ min

{ 𝑀
𝑛
+ ∥𝐻(𝜇0) − 𝐻(𝜇̂)∥𝐿4 ∥𝑔0 − 𝑔̂∥𝐿4 ,√

log(𝑀)
𝑛

+ ∥𝐻(𝜇0) − 𝐻(𝜇̂)∥𝐿2 ∥𝑔0 − 𝑔̂∥𝐿2

}
The above approach yields a fast rate guarantee with respect to

the sample size, but suffers from a large set of base models 𝑀.

The reason being that the convexification of the optimization

space introduced 𝑀 parameters that correspond to the weights

for each model and no penalty to encourage sparsity of the

solution.

One can achieve the ideal leading rate of log(𝑀)/𝑛, that is both

fast with respect to the sample size 𝑛 and grows only logarith-
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mically with the number of base models 𝑀, by a penalized

stacking approach called Q-aggregation [15], which penalizes

different models based on their individual performance:

𝑤 = arg min

𝑤∈𝑊
𝐿̂𝐷𝑅

(
𝑀∑
𝑖=1

𝑤𝑖𝜏𝑖 ; 𝜂̂

)
+

𝑀∑
𝑖=1

𝑤𝑖 𝐿̂𝐷𝑅(𝜏𝑖 ; 𝜂̂) (15.2.19)

where𝑊 is the𝑀-dimensional simplex. This is an𝑀-dimensional

convex optimization program that can be solved very fast with

modern convex optimization solvers. The resulting ensemble

model competes with the best model at the statistically optimal

leading rate of (see [16]):

𝜖(𝑛, 𝑀) ≲ log(𝑀)
𝑛

+ ∥𝐻(𝜇0) − 𝐻(𝜇̂)∥𝐿4 ∥𝑔0 − 𝑔̂∥𝐿4

Remark 15.2.3 (ATE and Intercept of Stacked Model) In

practice, one might also include an intercept in the stacking

model, i.e.

𝑤 = arg min

𝑤∈𝑊,𝑐∈ℝ
𝐿̂𝐷𝑅

(
𝑐 +

𝑀∑
𝑖=1

𝑤𝑖 𝜏̃𝑖 ; 𝜂̂

)
(15.2.20)

where 𝜏̃𝑖 are de-meaned versions of the CATE models, i.e.

𝜏̃𝑖(𝑋) = 𝜏𝑖(𝑋) − 𝔼𝑛𝜏𝑖(𝑋). In this case, the constant 𝑐 can be

interpreted as the final estimate of the Average Treatment

Effect. Given that typically the scoring dataset will be smaller

than the training dataset, it might be more advisable to use

an estimate of the ATE that comes from the trainin dataset.

For instance, we can use as 𝑐 the doubly robust estimate of

the ATE from the training dataset, denoted as 𝜃̂train

𝐷𝑅
and not

optimize over it in the scoring dataset, i.e.

𝑤 = arg min

𝑤∈𝑊
𝐿̂𝐷𝑅

(
𝜃̂train

𝐷𝑅 +
𝑀∑
𝑖=1

𝑤𝑖 𝜏̃𝑖 ; 𝜂̂

)
(15.2.21)

Remark 15.2.4 (Generic Stacking for CATE) Another ap-

proach that is typically employed in regression stacking is

using more flexible stacking regressors. In the case of stacking

for the CATE we can treat the ensemble problem as yet another

regression problem of predicting 𝑌(𝜂̂) from the covariates

𝜏 ◦ 𝑋 := (𝜏1(𝑋), . . . , 𝜏𝑀(𝑋)),
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using the scoring dataset. Thus we can call a generic ML

regression oracle to get 𝜏∗:

𝜏∗ := 𝑂𝑇∗
(
{𝜏 ◦ 𝑋𝑖 , 𝑌𝑖(𝜂̂)}𝑛𝑖=1

)
However, in this case one should worry about variance and

overfitting, as typically the scoring dataset will be of smaller

size than the training dataset. Thus, very flexible models

can deteriorate the performance. The benefits of more gen-

eral stacking regressors are not clear if one wants to solely

compete with the best base model. However, more general

regressors can potentially find models that perform better

than the best base model. In practice, the most commonly

used oracle models are penalized linear models, such as Lasso

or Ridge regression, potentially with postivity constraints on

the coefficients.

Remark 15.2.5 (Stability) The final CATE ensemble model

that we selected based on the aforementioned process (i.e.

training generic meta-learner models on a training set and

scoring and stacking on a test set) unfortunately does not

come with confidence intervals. Even though this is a process

that can lead to a model with small mean squared error, the

exact model can be quite sensitive to small variants of the

data analysis pipeline (e.g. the randomness in the train/score

split, the randomness in the estimators, the removal of a few

samples). Even though we cannot construct valid confidence

intervals for the predictions of the model or the findings in

its structure (i.e. which are the important features), it is still

advisable to perform some form of sensitivity or stability

check of the model to such variants. For instance, one can

run the same pipeline with different random seeds or remove

random small fractions of the data and see how stable the

different aspects of the model are. In the next section, we will

also discuss more formal statistical tests that one can perform

on a separate validation set (i.e. if one splits their data into

train/scoring/validation sets), which validate aspects of the

chosen CATE model.

Example 15.2.1 (Model Selection in Simple DGPs) We revisit

the three data generating processes from Example 15.1.1. We

depict below the performance of the Q-aggregation ensemble

in a random sample of each of the data generating processes

(𝑛 = 500).
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(a) DGP 1 (b) DGP 1 (c) DGP 1

Moreover, in Table 15.10, we depict the average performance

of each meta-learning method and of three variants of the

ensemble methods (based on Q-aggregation, convex regres-

sion and simply choosing the single best score model) in

terms of CATE RMSE over 100 experiments. We find that even

though different learners are optimal in each of the DGPs, the

ensemble learners are consistently close to the best performer

across the board, while each of the other learners fails by a

large margin in at least one DGP.

DGP 1 DGP 2 DGP 3

DR

[0.016 ± 0.012]

0.015 (0.036)

[0.193 ± 0.036]

0.195 (0.243)

[0.049 ± 0.011]

0.047 (0.070)

DRX

[0.012 ± 0.009]

0.010 (0.030)

[0.193 ± 0.037]

0.195 (0.243)

[0.178 ± 0.034]

0.181 (0.230)

R

[0.002 ± 0.007]

0.000 (0.020)

[0.374 ± 0.080]

0.418 (0.421)

[0.374 ± 0.079]

0.418 (0.421)

T

[0.038 ± 0.005]

0.037 (0.047)

[0.235 ± 0.007]

0.232 (0.245)

[0.036 ± 0.011]

0.035 (0.056)

X

[0.010 ± 0.008]

0.008 (0.028)

[0.235 ± 0.007]

0.232 (0.245)

[0.223 ± 0.006]

0.221 (0.235)

DAX

[0.013 ± 0.008]

0.010 (0.030)

[0.156 ± 0.053]

0.151 (0.243)

[0.155 ± 0.045]

0.149 (0.232)

Q

[0.017 ± 0.014]

0.014 (0.038)

[0.165 ± 0.049]

0.161 (0.243)

[0.037 ± 0.012]

0.035 (0.056)

Convex

[0.019 ± 0.013]

0.018 (0.037)

[0.163 ± 0.042]

0.164 (0.236)

[0.038 ± 0.011]

0.037 (0.056)

Best

[0.017 ± 0.015]

0.011 (0.042)

[0.171 ± 0.055]

0.164 (0.269)

[0.037 ± 0.013]

0.036 (0.061)

Figure 15.10: CATE RMSE perfor-

mance of each of the meta-learning

and ensemble methods in the three

simple DGPs across 100 experi-

ments. Each cell displays [mean ±
standard deviation], median (95%)

of the RMSE across the 100 experi-

ments.

Example 15.2.2 (Model Selection in the 401(k) Example) We

also revisit the 401(k) example from the perspective of model

comparison and ensembling. We first investigate the compar-

ison of each of the performance of each of the meta-learning

models compared to the constant model in Figure 15.11. We

find that we cannot statistically conclude that the RMSE per-

formance of any of these models is better than the constant

effect model.
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Figure 15.11: Score difference and

confidence interval for each of the

meta-learner models as compared

to a constant treatment effect base-

line. We find that among all models,

only for the s-learner we can barely

find that it has better CATE eval-

uation accuracy as compared to a

constant effect model with statisti-

cal significance.

Subsequently, we investigate the ensemble models that are

selected by each stacking method. We find that very flexible

methods such as OLS, or Ridge can be quite un-stable, while

methods that either constrain the weights to be positive or lie

in the simplex, or induce sparse ensembles are qualitatively

more reasonable.

Figure 15.12: CATE predictions of

different stacked ensemble mod-

els in the 401k example. Gradient

boosted forests (via the xgboost li-

brary) were used as ML oracles for

regression and classification. The

CATE is predicted on a grid of

income points, corresponding to

equally spaced income quantiles.

All other covariates were imputed

at their median values. For com-

parison, each plot also displays the

doubly robust best linear predictor

of the CATE with 5-95% confidence

intervals on a simple linear form of

engineered features of the income.
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Subsequently, we investigate for interpretability reasons, the

main factors that are driving the predictions of the ensemble

model chosen by Q-aggregation. We do this by fitting a simple

shallow binary regression tree on the predictions of the model.

Given that the ensemble chooses to put weight primarily on

the DR-Learner model, the insights are similar to those in

Example 15.1.4.

Figure 15.13: Single binary regres-

sion tree distillation of the Q-

aggregation based stacked ensem-

ble.

15.3 CATE Model Validation

Now that we have a selected a winning CATE model or ensem-

ble (e.g., the ensemble that comes out of Q-aggregation on the

scoring data), we want to run formal statistical tests that validate

whether the model that we chose contains any signal of treat-

ment effect heterogeneity, or whether it is a confident model on

average, or whether it is a useful model to drive personalized

policy decisions as compared to simple benchmarks. We will

refer to all these methodologies as CATE model validation and

all the techniques can be thought as diagnostics that one should

run on their CATE model before deployment or before using

it to drive personalized decisions. As a side benefit, many of

these diagnostics can also be used as a formal statistical test of

the presence of treatment effect heterogeneity.

Throughout this section we assume that one has held out yet

another dataset, called the test set (e.g., by splitting their data

into train, validation and test) and that one has selected a CATE

model 𝜏∗ without using the test set (e.g., by running some

ensemble pipeline on on the train and validation set).
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Heterogeneity Test Based on Doubly Robust BLP

If we calculate the doubly robust pseudo outcomes 𝑌𝐷𝑅(𝜂̂) on

the test set (using cross-fitting within the test set to estimate the

models 𝜂̂ or using the union of the training and scoring data to

estimate 𝜂̂). Then we know that if the model of the CATE 𝜏∗ is

good, the best linear predictor of the true CATE using (1, 𝜏∗(𝑋))
as features should yield a statistically significant coefficient on

the feature associated with the CATE model. In fact, in an ideal

world this coefficient should be 1.

Thus we can run such a significance test to measure whether the

CATE model 𝜏∗ has picked up any signal that is correlated with

the true CATE. Note that if 𝜏0(𝑋) is the true CATE E[𝑌(1)−𝑌(0) |
𝑋], then the coefficient associated with 𝜏∗ in the OLS regression

𝑌(𝜂̂) ∼ (1, 𝜏∗(𝑋)) is converging in the population limit to the

quantity:

𝛽1 :=
Cov(𝜏0(𝑋), 𝜏∗(𝑋))

Var(𝜏∗(𝑋))
=

Cov(𝑌(1) − 𝑌(0), 𝜏∗(𝑋))
Var(𝜏∗(𝑋))

(15.3.1)

Thus, the statistical test of whether 𝛽1 is non-zero is a statistical

test on the correlation of the individual treatment effect 𝑌(1) −
𝑌(0) and the learned model 𝜏∗(𝑋). Note that if this test comes up

as significant, then this also implies that there exists treatment

effect heterogeneity, as a function of the observed features 𝑋.

Moreover, the theory from the first section of this chapter applies

here to show that the statistical test based on OLS regression

is a valid test, as long as the product of the regression and

propensity estimation errors, converges faster than 𝑛−1/2
.

Example 15.3.1 (Heterogeneity Test in 401(k) Example) Re-

turning to our 401k example, we can split the data in three

sets (train, score, test) and employ the heterogeneity test on

the score set using the ensemble model chosen based on the

Q-aggregation method of stacking. Out of the 9716 samples

used in this analysis, 60% were used for training and 20% for

scoring and 20% for testing. For the training of the nuisance

parameters 𝜂̂ that are used in the doubly robust proxy labels

in the test set, we used the union of the (train, score) datasets,

due to the relatively small size of the test set. Moreover, for

better interpretability of the results we ran OLS on the cen-

tered CATE predictions, i.e. on features (1, 𝜏∗(𝑋) − 𝔼𝑛𝜏∗(𝑋)).
This does not change the intepretation of 𝛽1, but it changes

the interpretation of the constant term as the ATE (which

wouldn’t have been the case without centering).
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The results are depicted in Figure 15.14. We find that the

ensemble model does indeed have a statistically significant

correlation with the individual treatment effect 𝑌(1) − 𝑌(0)
and that the confidence interval on that coefficient includes

the ideal coefficient of 1. We did find, however, large variation

of the specific numbers reported in the table, dependent on

the random split that was chosen in (train, score, test) sets

from the original data.

coef std err P>|z| [0.025 0.975]

const 7634.4018 1805.185 0.000 4096.303 1.12e+04

𝜏∗(𝑋) 2.2406 0.718 0.002 0.833 3.648

Figure 15.14: OLS statistical test

regression 𝑌𝐷𝑅(𝜂̂) on the features

(1, 𝜏∗(𝑋) − 𝔼𝑛𝜏∗(𝑋)) in the 401(k)

example. Standard Errors are het-

eroscedasticity robust (HC1). 𝜏∗ cor-

responds to the stacked ensemble

based on Q-aggregation.

Validation Based on Calibration

A good CATE model should also be well calibrated. In the

context of regression, a regression model 𝑔(𝑋) that predicts

some outcome 𝑌, is calibrated if the expected value of the

outcome, conditional on the model returning a value of 𝛾,

should be equal to 𝛾, i.e.

E[𝑌 | 𝑔(𝑋) = 𝛾] = 𝛾. (15.3.2)

Similarly, we can say that a CATE model 𝜏∗ is calibrated if the

expected value of the treatment effect, conditional on the model

returning a value of 𝑡, should be equal to 𝑡, i.e.

𝛾(𝜏∗, 𝑡) := E[𝑌(1) − 𝑌(0) | 𝜏∗(𝑋) = 𝑡] = 𝑡 (15.3.3)

Moreover, if we let P𝜏∗ denote the distribution of treatment

effects returned by model 𝜏∗, then we can define average cali-

bration scores across different values of 𝑡. Some popular mea-

sures defined in the literature [17–19] are either the ℓ2 or the

ℓ1-expected calibration error:

CAL1(𝜏∗) :=

∫
|𝛾(𝜏∗, 𝑡) − 𝑡 | 𝑑P𝜏∗(𝑡) (15.3.4)

CAL2(𝜏∗) :=

∫
(𝛾(𝜏∗, 𝑡) − 𝑡)2𝑑P𝜏∗(𝑡) (15.3.5)

In fact, an interesting property of the ℓ2-calibration error, is that

the MSE of a CATE model 𝜏∗ satisfies a calibration-distortion de-

composition (analogous to the bias-variance decomposition):

∥𝜏∗ − 𝜏0∥𝐿2 = CAL2(𝜏∗) +DIS(𝜏∗) (15.3.6)
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where DIS(𝜏∗) = E [Var(𝜏0(𝑋) | 𝜏∗(𝑋))]. Thus any consistent 𝜏∗
model will eventually also be calibrated. However, calibration

is a self-consistency guarantee that should be desireable for

many models and should not account for the majority of the

MSE. Moreover, even if a model is far from 𝜏0, it is still desirable

from a "steakholder experience" perspective that it should be

calibrated.

The aforementioned desiderata can be taken to data by invoking

again the proxy outcome regression approach. In particular,

note that by the properties of the doubly robust proxy labels:

𝛾(𝜏∗, 𝑡) = E[𝑌(𝜂0) | 𝜏∗(𝑋) = 𝑡] (15.3.7)

we can use observed data and out-of-sample estimates 𝜂̂ of the

nuisance functions 𝜂0, to measure the calibration properties of

a candidate CATE model.

To avoid having to run a non-parametric regression of 𝑌(𝜂0) on

𝜏∗(𝑋), in order to estimate the function 𝛾(𝜏∗, 𝑡), a typical way

that calbiration is evaluated is by looking at quantile bins of

the distribution of CATE. For instance, if we let 𝑞1 ≤ . . . ≤ 𝑞𝐾
denote a set of 𝐾 equally spaced quantiles of the distribution

P𝜏∗ , then a well-calibrated model should satisfy that:

E[𝑌(𝜂0) | 𝜏∗(𝑋) ∈ [𝑞𝑡 , 𝑞𝑡+1]] = E[𝜏∗(𝑋) | 𝜏∗(𝑋) ∈ [𝑞𝑡 , 𝑞𝑡+1]]

In other words, consider any group𝐺𝑡 , defined defined by some

quantile interval [𝑞𝑡 , 𝑞𝑡+1] of the predictions of the model 𝜏∗.
Then the group average treatment effect (GATE) for the group

𝐺𝑡 , should be the same, whether we calculate it by using the

doubly robust GATE, i.e., E[𝑌(𝜂0) | 𝑋 ∈ 𝐺𝑡] or whether we

calculate it by using the average CATE value of the model 𝜏∗
within that group, i.e., E[𝜏∗(𝑋) | 𝑋 ∈ 𝐺𝑡].

We can now easily take the latter approach to data. For some

small 𝐾 (e.g. 𝐾 = 4), we can consider a set of thresholds

𝑞1 ≤ . . . ≤ 𝑞𝐾+1 that roughly approximate equally spaced

quantiles of the CATE distribution P𝜏∗ and which are calculate

without looking at the test sample (e.g. this can be calculated as

the empirical quantiles of the empirical distribution of values of

the model 𝜏∗ on the union of the training and scoring samples).

These now define a set of 𝐾 groups, 𝐺1, . . . , 𝐺𝐾 as described

in the previous paragraph. Subsequently, we can estimate the

GATE for each group, using the doubly robust approach on the
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test data, i.e.

𝜃̂𝐷𝑅
𝑘

=
1

|{𝑖 ∈ [𝑛] : 𝑋𝑖 ∈ 𝐺𝑘}|
∑

𝑖∈[𝑛]:𝑋𝑖∈𝐺𝑘
𝑌𝑖(𝜂̂) (15.3.8)

where 𝜂̂ is either estimated in a cross-fitting manner on the test

set or using the union of training and scoring samples. Equiva-

lently, we can simulaneoulsy estimated all these parameters by

running OLS of 𝑌( ˆ𝑒𝑡𝑎) on the one-hot-encodings of the group

membership indicator functions, as in the first section of the

chapter. Moreover, confidence intervals can be directly obtained

for these values (e.g. based on the OLS heteroskedasticity robust

confidence intervals or based on the simple formula for the

standard error of an average of i.i.d. observations; in this case

we have the average of the |{𝑖 ∈ [𝑛] : 𝑋𝑖 ∈ 𝐺𝑘}| observations

{𝑌𝑖(𝜂̂) : 𝑖 ∈ [𝑛], 𝑋𝑖 ∈ 𝐺𝑘}). These confidence intervals can also

be used to test whether these different groups have statistically

signficant different average treatment effects, i.e. whether the

groups are separated statistically.

Moreover, these estimates can then also be used to construct

approximate analogues of the ℓ2 and ℓ2-average calibration

scores. For each group 𝐺𝑘 , we can also calculate the average

value of the model 𝜏∗, i.e.,

𝜃̂∗𝑘 =
1

|{𝑖 ∈ [𝑛] : 𝑋𝑖 ∈ 𝐺𝑘}|
∑

𝑖∈[𝑛]:𝑋𝑖∈𝐺𝑘
𝜏∗(𝑋𝑖) (15.3.9)

Ideally, if the model was reasonable, 𝜃̂∗
𝑘

should be very close

to 𝜃̂𝐷𝑅
𝑘

. The average difference can be considered as a quality

metric of 𝜏∗, i.e.,

C̃AL1(𝜏∗) :=

𝐾∑
𝑘=1

��𝜃̂𝐷𝑅
𝑘
− 𝜃̂∗𝑘

�� · |{𝑖 ∈ [𝑛] : 𝑋𝑖 ∈ 𝐺𝑘}| (15.3.10)

C̃AL2(𝜏∗) :=

𝐾∑
𝑘=1

(
𝜃̂𝐷𝑅
𝑘
− 𝜃̂∗𝑘

)
2

· |{𝑖 ∈ [𝑛] : 𝑋𝑖 ∈ 𝐺𝑘}| (15.3.11)

These can be viewed as binning approximations to the ℓ1- and

ℓ2-average calibration scores (the first one was recommended

as a calibration score in the context of randomized trials by

[20]).

Example 15.3.2 (Calibration in the 401(k) example) We revisit

the 401(k) example from the perspective of calibration. Fol-

lowing the same data analysis pipeline as in Example 15.3.1,

we now also calculate the doubly robust GATEs for groups
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defined by quartiles of the CATE distribution of the ensemble

𝜏∗ constructed based on Q-aggregation stacking. The bottom

group corresponds to the bottom 25% of predicted CATEs,

the next group to the 25%-50% of predicted CATEs, etc. In

Figure 15.15, we depict on the x-axis the average CATEs, as

calculated based on 𝜏∗, within each group and on the y-axis

and the doubly robust estimate and 5-95% confidence interval

for the GATE as calculated based on the doubly robust proxy

labels 𝑌(𝜂̂) on the test set.

Figure 15.15: Calibration check for

chosen ensemble model 𝜏∗ in the

401(k) example. Test samples are

splitted in four groups based on

CATE predictions and CATE quan-

tiles (e.g. bottom group contains

samples whose CATE predictions

lie in the bottoms 25% of predic-

tions). The x-axis depicts the aver-

age predicted CATE within each

group based on 𝜏∗, while the y-

axis depicts the GATE as calculated

based on the doubly robust pseudo-

outcomes calculated on the test set.

Interpretation via Distillation and Group Differences. We

can also try to interpret what are the differences of characteris-

tics between the top and bottom CATE groups; if we find that

they have statistically significantly different GATEs. We can

do that by either reporting the mean values of the covariates in

the two groups or building some interpretable classification

model that distinguishes between the two groups.
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group1

mean ± s.e.

group2

mean ± s.e.

group1 - group2

mean ± s.e.

age 40.01 ± 0.27 42.56 ± 0.45 -2.56 ± 0.72

inc 26898 ± 346 65771 ± 760 -38873 ± 1106

fsize 2.82 ± 0.04 3.12 ± 0.07 -0.30 ± 0.11

educ 12.77 ± 0.07 14.74 ± 0.11 -1.97 ± 0.18

db 0.24 ± 0.01 0.37 ± 0.02 -0.14 ± 0.03

marr 0.52 ± 0.01 0.84 ± 0.02 -0.32 ± 0.03

male 0.22 ± 0.01 0.20 ± 0.02 0.02 ± 0.03

twoearn 0.29 ± 0.01 0.66 ± 0.02 -0.37 ± 0.03

pira 0.16 ± 0.01 0.42 ± 0.02 -0.26 ± 0.03

nohs 0.16 ± 0.01 0.02 ± 0.01 0.13 ± 0.02

hs 0.41 ± 0.01 0.26 ± 0.02 0.15 ± 0.03

smcol 0.24 ± 0.01 0.26 ± 0.02 -0.02 ± 0.03

col 0.19 ± 0.01 0.46 ± 0.02 -0.27 ± 0.03

hown 0.57 ± 0.01 0.84 ± 0.02 -0.27 ± 0.03

Figure 15.16: Group differences be-

tween the top 25% predicted CATE

group (group2) and the bottom 75%

predicted CATE group (group1) in

the 401k example.

For instance, we can train a shallow binary classification tree

that tries to predict whether a sample comes from the bottom

or the top group, based on 𝑋, using the union of samples

from the two groups.

Figure 15.17: Decision tree that dis-

tills the main differences between

group1 and group2 as defined in

Figure 15.16.

Validation Based on Uplift Curves

Another way that we can judge the quality of a CATE model

is by testing its ability to help us prioritize or stratify which

part of the population we should be treating. In Section ??,

we studied the value of the optimal policy subject to treating

exactly a 𝑞-fraction of the overall population. In a sense, how

much this value varies or how different it is from the ATE is

a measure of the amount of uplift offered by personalizing
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10: These terminologies primarily

stem from the uplift modelling lit-

erature in Computer Science [21–

23].

optimally based on 𝑋 using the true CATE 𝜏0. We can study

the same question from the lens of 𝜏∗, which can give a lesser or

equal level of uplift, the higher the uplift the better the model.

Unlike Section ??, where 𝜏0 was a nuisance to be estimated and

plugged into the optimal constrained or unconstrained policy,

here 𝜏∗ is fixed and given (as it is based on a separate data set).

In particular, our evaluation procedures would work even if

𝜏0 were hard to learn or had discontinuities in its distribution,

since we focus on a fixed 𝜏∗ instead.

Let 𝜇(𝜏∗, 𝑞) denote an estimate based on non-test data of the

1 − 𝑞 quantile of the distribution P𝜏∗ of CATEs produced by

the model 𝜏∗. Then the group {𝑋 : 𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)} is fixed in

terms of the test data. The corresponding GATE is

GATE(𝑞) := E[𝑌(1) − 𝑌(0) | 𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)] (15.3.12)

The improvement in the average effect of the treated, induced

by the prioritization rule based on 𝜏∗, as compared to treating a

random 𝑞 fraction of the population, would be:

TOC(𝑞) := GATE(𝑞) −ATE (15.3.13)

and the improvement in the total effect would be:

QINI(𝑞) := TOC(𝑞)P(𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)). (15.3.14)

For any fixed CATE model 𝜏∗, the function TOC(𝜏∗, ·) is referred

to in the literature as the Treatment Operating Characteristic curve,

while the function QINI(𝜏∗, ·) is referred to as the QINI curve

(analogous to the Gini curve for classification models).
10

These curves also have interesting interpretations as covariances

of the individual treatment effect 𝑌(1) − 𝑌(0)with non-linear

functions of the CATE model 𝜏∗ (see proofs in Appendix 15.B):

TOC(𝑞) = Cov

(
𝑌(1) − 𝑌(0), 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)}

P(𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞))

)
QINI(𝑞) = Cov (𝑌(1) − 𝑌(0), 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)})

Since the second term in each covariance is a function of𝑋 alone

and E[𝑌(1) − 𝑌(0) | 𝑋] = E[𝑌(𝜂0) | 𝑋], these quantities are

identified by replacing the individual effects with the doubly

robust pseudo-outcomes:

TOC(𝑞) = Cov

(
𝑌(𝜂0),

1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)}
P(𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞))

)
QINI(𝑞) = Cov (𝑌(𝜂0), 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)})
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Area Under the Curve (AUC) Viewing the above two quanti-

ties as functions of the target fraction 𝑞, we can calculate the

areas under these two curves as scalar measures of quality

of the model 𝜏∗ in its ability to correctly target sub-parts of

the population at different levels of treatment population size

targets, i.e.

𝐴𝑈𝑇𝑂𝐶 :=

∫
1

0

TOC(𝑞)𝑑𝑞 (15.3.15)

𝐴𝑈𝑄𝐶 :=

∫
1

0

QINI(𝑞)𝑑𝑞 (15.3.16)

The larger the Area Under the Curve, the better the CATE model

is at treatment prioritization or stratification.

Moreover, these measures are signals of treatment effect hetero-

geneity. If any of the two measures are statistically non-zero,

then treatment effect heterogeneity was detected with statistical

significance. In fact, if we detect that any of these curves lies

above zero at any point 𝑞, with statistical significance, then that

also serves as a test for treatment effect heterogeneity. For this

reason, we will now develop confidence intervals and simul-

taneous confidence bands for these two curves, when they are

estimated from samples.

Remark 15.3.1 (Tie-Breaking) If our CATE model returns a

constant effect for a large segment of the population, then

the quantile estimate function 𝜇(𝜏∗, 𝑞) will contain many

flat regions and ties cannot be ignored. In this case, if we

want to approximately target a 𝑞-fraction of the population,

then we should be treating deterministically everyone with

𝜏∗(𝑋) > 𝜇(𝜏∗, 𝑞) and units with 𝜏∗(𝑋) = 𝜇(𝜏∗, 𝑞), we should

be treating with probability:

𝑞 − P(𝜏∗(𝑋) > 𝜇(𝜏∗, 𝑞))
P(𝜏∗(𝑋) = 𝜇(𝜏∗, 𝑞))

which corresponds to the probability mass that remains after

treating everyone above 𝜇(𝜏∗, 𝑞) (i.e. 𝑞 − P(𝜏∗(𝑋) > 𝜇(𝜏∗, 𝑞))),
divided by the probability mass in the group of units that have

predicted CATE equal to 𝜇(𝜏∗, 𝑞). We can then use an estimate

of this quantity using the training and scoring datasets, e.g.

𝜆 =
𝑞 − P𝑛(𝜏∗(𝑋) > 𝜇(𝜏∗, 𝑞))

P𝑛(𝜏∗(𝑋) = 𝜇(𝜏∗, 𝑞))

and consider the policy that treats deterministically for units
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with 𝜏∗(𝑋) > 𝜇(𝜏∗, 𝑞) and treats with probability 𝜆 for units

with 𝜏∗(𝑋) = 𝜇(𝜏∗, 𝑞). In this case, the TOC and QINI curves

will take a slightly more complex form:

Cov

(
𝑌(𝜂0),

1{𝜏∗(𝑋) > 𝜇(𝜏∗, 𝑞)} + 𝜆1{𝜏∗(𝑋) = 𝜇(𝜏∗, 𝑞)}
P(𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)) + 𝜆P(𝜏∗(𝑋) = 𝜇(𝜏∗, 𝑞))

)
Cov (𝑌(𝜂0), 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)} + 𝜆1{𝜏∗(𝑋) = 𝜇(𝜏∗, 𝑞)})

All the conclusions and intution in what follows, directly ex-

tends to account for tie-breaking, so we will omit tie-breaking

for simplicity of exposition.

Estimation and inference. To estimate the TOC and the QINI

curves, we will use the doubly robust proxy outcome approach.

We will train nuisance models 𝜂̂ without using the test sample

and then construct estimates of the TOC and QINI curves as:

T̂OC(𝑞) = Cov𝑛

(
𝑌(𝜂̂), 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)}

𝜋̂(𝑞)

)
(15.3.17)

Q̂INI(𝑞) = Cov𝑛 (𝑌(𝜂̂), 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)}) (15.3.18)

where 𝜋̂(𝑞) = 𝔼𝑛1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)} and we used the short-

hand notation:

Cov𝑛(𝐴, 𝐵) = 𝔼𝑛 [(𝐴 − 𝔼𝑛(𝐴)) (𝐵 − 𝔼𝑛(𝐵))]

Both of these estimates are of the general estimation form that

can be handled by the Neyman orthogonality framework. For

each 𝑞, we can view each of the estimates as an estimate of the

form:

𝜃̂(𝑞; 𝜈) = 𝔼𝑛[𝜓(𝑊 ; 𝜈)]

for some appropriate defined function 𝜓 and with 𝜈 being

a vector of nuisance quantities, which contain 𝜂, 𝜋 and 𝜃0 =

E[𝑌(𝜂0)] and which satisfies Neyman orthogonality with respect

to all of these nuisance quantities. Thus these estimates will be

asymptotically Gaussian with the effect of the nuisances being

negligible. Moreover, even if we evaluate these curves at many

points, as long as the number of points 𝑞 that we use does not

grow exponentially with the sample size, then these estimates

will be jointly Gaussian and we can construct simultaneous

confidence bands as in Section 4.4.

Theorem 15.3.1 Let 𝑞 ∈ 𝑄 := {𝑞1, . . . , 𝑞𝑝} denote a grid of
quantiles. Let 𝛼 = (𝛼1, . . . , 𝛼𝑝) denote the 𝑝-dimensional vector
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whose 𝑡-th coordinate is TOC(𝑞) and 𝛼̂ the corresponding vector of
estimates T̂OC(𝑞). Let 𝕀(𝑞) := 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)} and:

𝜓ℓ (𝑊) = (𝑌(𝜂0) − 𝜃0)
(
𝕀(𝑞ℓ )
𝜋0(𝑞ℓ )

− 1

)
− 𝛼ℓ

with 𝜃0 = E𝑌(𝜂0) and 𝜋0(𝑞) = E𝕀(𝑞). Suppose that the nuisance
estimates 𝜂̂ are trained on a separate sample and satisfy,

√
𝑛∥𝐻(𝜇̂) − 𝐻(𝜇0)∥𝐿2 ∥ 𝑔̂ − 𝑔0∥𝐿2 ≈ 0

∥𝐻(𝜇̂) − 𝐻(𝜇0)∥𝐿2 + ∥ 𝑔̂ − 𝑔0∥𝐿2 ≈ 0

Provided that log(𝑝)5/𝑛 is small and the estimates satisfy the
adaptivity property:√

log(𝑝)
𝑝

max

ℓ=1

��√𝑛(𝛼̂ℓ − 𝛼ℓ ) − 𝔼𝑛𝜙ℓ (𝑊)
�� ≈ 0

the following Gaussian approximation holds:
√
𝑛(𝛼̂ − 𝛼0) 𝑎∼ 𝑁(0, 𝑉),

where

𝑉ℓ 𝑘 = E𝜓ℓ (𝑊)𝜓𝑘(𝑊)

Analogous theorem also applies to the QINI curve estimates.

This result can be used to construct simultaneous confidence

bands for the value of the TOC curve at many quantiles 𝑞 as

described in Remark 4.4.1. We can consider the estimate of the

variance:

𝑉̂ℓ 𝑘 = 𝔼𝑛𝜓̂ℓ (𝑊)𝜓̂𝑘(𝑊) 𝜓̂ℓ (𝑊) = (𝑌(𝜂̂) − 𝜃̂)
(
𝕀(𝑞ℓ )
𝜋̂(𝑞ℓ )

− 1

)
− 𝛼̂ℓ

and construct a confidence band at confidence level 𝛼:

𝐶𝑅 = ×𝑝
ℓ=1
[𝛼̂ℓ ± 𝑐

√
𝑉̂ℓℓ/𝑛]

where 𝑐 is the 1 − 𝛼 quantile of the distribution of ∥𝑍∥∞ for a

random variable 𝑍 ∼ 𝑁(0, 𝐷̂−1/2𝑉̂𝐷̂−1/2), where 𝐷̂ = diag(𝑉̂)
is the matrix with diagonal entries 𝑉̂ℓℓ and zero off-diagonal

entries.
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Figure 15.18: Point estimates and

uniform confidence band of the

TOC curve for the Q-aggregation

ensemble 𝜏∗ in the 401(k) example.

Note that if there is any point that is above the zero line, with

confidence, in this curve, then the CATE model 𝜏̂ has identified

heterogeneity in the effect in a statistically significant manner.

For such a test we can calculate a one-sided confidence interval,

as we only care that the quantities are larger than some value

with high confidence. Using the Gaussian approximation, a one-

sided confidence band, at confidence level 𝛼, can be calculated

as:

𝐶𝑅 = ×𝑝
ℓ=1

[
𝛼̂ℓ − 𝑐

√
𝑉̂ℓℓ/𝑛,∞

)
where 𝑐 is the 1 − 𝛼/2 quantile of the distribution of ∥𝑍∥∞ for

a random variable 𝑍 as defined in the previous paragraph.

Figure 15.19: Point estimates

and one-sided uniform confidence

band of the TOC curve for the

Q-aggregation ensemble 𝜏∗ in the

401(k) example. The heterogeneity

statistic depicted in the title corre-

sponds to the largest lower bound

of the confidence band across all

quantile points and is a statistical

signal for the presence treatment

effect heterogeneity.
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We can also calculate the area under the curve using the discrete

difference approximation:

̂𝐴𝑈𝑇𝑂𝐶 =

𝑝∑
ℓ=1

T̂OC(𝑞ℓ ) (𝑞ℓ+1 − 𝑞ℓ ) (15.3.19)

Note that since this is a linear combination of the estimates at

each 𝑞ℓ , under the assumptions of Theorem 15.3.1, the estimate

of the area under the curve will be asympotically normal and

centered around the quantity:

𝐴𝑈𝑇𝑂𝐶 =

𝑝∑
ℓ=1

TOC(𝑞ℓ ) (𝑞ℓ+1 − 𝑞ℓ )

and we can calculate a one-sided confidence interval as:

𝐴𝑈𝑇𝑂𝐶 ∈
[

̂𝐴𝑈𝑇𝑂𝐶 −
√
𝑉̂/𝑛,∞

)
where the estimate of the variance is:

𝑉̂ = 𝔼𝑛𝜓̂(𝑊)2 𝜓̂(𝑊) =
𝑝∑
ℓ=1

𝜓̂ℓ (𝑊) (𝑞ℓ+1 − 𝑞ℓ )

If the confidence interval does not contain zero, then we have

again detected heterogeneity.

AUTOC s.e. One-Sided 95% CI

5228.9137 1471.8731 [2807.8980, Infty]

Figure 15.20: AUTOC point esti-

mate and one-sided confidence in-

terval for the Q-aggregation ensem-

ble 𝜏∗ in the 401(k) example.

The exact same analysis can be conducted for the QINI curve,

constructing doubly robust point estimates and a simultaneous

one-sided confidence band, as well as a one-sided confidence

interval for the discretized quantile approximation of the AUQC,

i.e.

𝐴𝑈𝑄𝐶 =

𝑝∑
ℓ=1

QINI(𝑞ℓ ) (𝑞ℓ+1 − 𝑞ℓ )
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Figure 15.21: Point estimates

and one-sided uniform confidence

band of the QINI curve for the

Q-aggregation ensemble 𝜏∗ in the

401(k) example. The heterogeneity

statistic depicted in the title corre-

sponds to the largest lower bound

of the confidence band across all

quantile points and is a statistical

signal for the presence treatment

effect heterogeneity.

AUQC s.e. One-Sided 95% CI

1542.4581 385.2292 [908.8125, Infty]

Figure 15.22: AUQC point estimate

and one-sided confidence interval

for the Q-aggregation ensemble 𝜏∗
in the 401(k) example.

Remark 15.3.2 (Rank-Average Weighted Treatment Effects)

The analysis in this section viewed the quantile function

𝜇(𝜏∗, 𝑞) as fixed and considered a variant of the uplift curves

based on the targeting policy 𝜋𝑞(𝑋) := 1{𝜏∗(𝑋) ≥ 𝜇(𝜏∗, 𝑞)}.
If this was the policy that was deployed in the population,

then we define the TOC curve at value 𝑞, as the average

effect of the treated population of policy 𝜋𝑞 and we perform

inference on this quantity. An alternative view of the TOC

curve is to consider the ranking viewpoint that at deployment

time will rank the population based on the prediction models

predictions and will treat exactly the top 𝑞 fraction of the

population. From this viewpoint, the accuracy of the quantile

estimate matters a lot and should be incorporated into the

uncertainty estimates. Quantifying the uncertainty that stems

from estimation errors in the quantiles 𝜇(𝜏∗, 𝑞) is a more

involved topic. The recent work of [24] takes this view and

performs inference on the ranking interpretation of the TOC

and QINI curves, correctly accounting for the uncertainty

in the estimation of the quantiles of the CATE distribution

and offers procedures for asymptotically correct confidence

intervals (albeit not confidence bands).

«««< HEAD ======= In Section ?? we studied evaluation of

personalized policies, in particular optimal ones. However, we
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did not delve into the learning of optimal policies, just as we

discussed inference on CATE in Chapter 14 but did not delve

into learning it using flexible non-parametric methods. While

any CATE model learned as in the present chapter can be used

to prioritize treatment, a CATE model would only be a means

to an end and not the object of interest itself, which may be

learned more directly. The primary object of interest is a good

personalized treatment policy 𝜋 that given any instance of the

variable 𝑋 returns a treatment assignment 𝜋(𝑋) ∈ {0, 1}.

Note that learning a good policy is an inherently different

statistical task than learning a good CATE model. For a good

unconstrained policy, it suffices that we learn whether the CATE

𝜏(𝑋) = E[𝑌(1) − 𝑌(0) | 𝑋] is positive or negative. As seen in

Section ??, the optimal policy is given by looking at the sign

of CATE: 𝜋∗(𝑋) = 𝟙{𝜏0(𝑋) ≥ 0}. Thus policy learning is more

akin to a classification problem that tries to predict the sign of

the CATE as opposed to a regression problem that tries to learn

the magnitude of CATE too. Of course, mistakes in predicting

the sign are more detrimental when the magnitude of the CATE

is larger and therefore should be weighed differently. Thus

policy learning is more accurately described as a classification

problem with sample dependent mis-classification costs, known

in the machine learning literature as cost-sensitive classification.

Recall from Section ?? that we define the gains of policy over no

treatment as𝑉(𝜋) = E[𝜋(𝑋)𝑌(1)+(1−𝜋(𝑋))𝑌(0)]−E[𝑌(0)] =
E[𝜋(𝑋)𝑌(𝜂0)] (Eq. (??)). Optimizing 𝑉(𝜋) over 𝜋 is equivalent

to a sample-weighted classification problem, where the goal

of 𝜋 is to match the sign of 𝑌(𝜂0), with sample weights |𝑌(𝜂0)|.
More formally, note that:

argmax𝜋𝑉(𝜋) = argmax𝜋E [(2𝜋(𝑋) − 1)𝑌(𝜂0)]

and we can simplify the latter as:

E [(2𝜋(𝑋) − 1)𝑌(𝜂0)] = E [(2𝜋(𝑋) − 1) sign (𝑌(𝜂0)) |𝑌(𝜂0)|]
= E [𝟙 {2𝜋(𝑋) − 1 = sign (𝑌(𝜂0))} |𝑌(𝜂0)|]

Thus we can treat the sign of 𝑌(𝜂0) as the "label" of the sample

in a classification problem and |𝑌(𝜂0)| as the weight of the

sample, and our centered treatment policy 2𝜋(𝑍) − 1 is trying

to predict the label. We can therefore invoke any machine

learning classification approach in a meta-learning manner, so

as to solve this weighted classification problem. One popular

approach is to use a decision tree classifier, since it will lead to

an interpretable policy that is easy to visualize.
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Figure 15.23: The details that are

displayed on each node are also

useful in understanding the group

average treatment effect for each

node. In particular, the information

‘samples=N‘, gives us the size of

each node 𝑁 , and the information

‘value=[A, B]‘, then ‘A‘ is the sum

of the |𝑌(𝜂̂)| for the samples where

𝑌(𝜂̂) < 0 and similarly, ‘B‘ is the

sum of |𝑌(𝜂̂)| for the samples where

𝑌(𝜂̂) > 0. Thus to get the GATE

for each node, we simply do ‘(B-

A)/N‘, which would correspond to

1

𝑁

∑
𝑖∈node

𝑌(𝜂̂), which is the dou-

bly robust estimate of the GATE for

the node.

In finite samples, we would also need to construct estimates 𝜂̂
of the nuisance parameters 𝜂0 in a cross-fitting manner using

arbitrary ML regression methods, as discussed in prior sections

and then solve a sample weighted classification problem with

samples {(𝑋𝑖 , sign(𝑌𝑖(𝜂̂)),𝑊𝑖 = |𝑌𝑖(𝜂̂)|}𝑛𝑖=1
. The results in [25]

show that the regret of the returned policy 𝜋̂, as compared to

the optimal policy within some policy space Π, i.e.:

𝑅(𝜋̂) = max

𝜋∗∈Π
𝑉(𝜋∗) −𝑉(𝜋̂) (15.3.20)

inherit the double robustness property and decay at the order

of

≈
√
𝑉∗𝑉𝐶(Π)

𝑛
+ ∥𝐻(𝜇̂) − 𝐻(𝜇0))∥𝐿2 ∥ 𝑔̂ − 𝑔0∥𝐿2

where𝑉𝐶(Π) is a measure of statistical complexity of the policy

space Π (e.g. a small constant for shallow binary decision trees)

and 𝑉∗ is a constant that in many practical scenarios can be

thought as some constant multiple of the variance of the value

of the optimal policy in the class 𝜋∗ = argmax𝜋∈Π𝑉(𝜋), i.e.

𝑉∗ ≈ Var(𝜋∗(𝑋)𝑌(𝜂0))

See also [4, 26] for generalizations and variations of this result.

Remark 15.3.3 (Probabilistic Policies) The aforementioned

analysis also applies if we allow our policy space to output

probabilistic choices, i.e. 𝜋(𝑋) ∈ [0, 1] denotes the probability

of treatment. In this case, our objective can equivalently be

thought as optimizing a weighted classification problem of
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the form:

E [P𝐷∼𝜋[(2𝐷 − 1) = sign(𝑌(𝜂0))] |𝑌(𝜂0)|] (15.3.21)

Remark 15.3.4 (Variance Penalization Methods) One caveat

of treating the policy optimization problem as a weighted

classification problem and calling a classification oracle is

that we might be artificially favoring policies that have high

variance. In particular, suppose that some policy 𝜋 assigns a

large probability to a treatment at some region of 𝑋 in which

the observed data that has a very low probability. In this case,

the variance of this policy is very large, due to the fact that

we are dividing by the propensity in the observed data. In

this case, one would expect that 𝑉∗ in the aforementioned

regret rate will be a very large multiple of the variance of

the optimal policy Var(𝜋∗(𝑋)𝑌(𝜂0)). To avoid dependence on

the worst case such overlap ratio between any policy in Π

and the observed policy, i.e. sup𝑥∈𝑋
𝜋(𝑥)
𝜇0(𝑥) , one needs to amend

the objective function that we are optimizing to penalize

policies that are expected to have large variance (equiv. small

overlap with the policy that was deployed in the observational

data). In it’s simplest form, one can invoke explicit variance

penalization in the empirical objective:

max

𝜋∈Π
𝔼𝑛 [𝜋(𝑋)𝑌(𝜂̂)] − 𝜆

√
Var𝑛(𝜋(𝑋)𝑌(𝜂̂)) (15.3.22)

where 𝜆 is a hyper-parameter that for policy spaces with

bounded VC dimension should be set to some constant mul-

tiple of

√
𝑉𝐶(Π) log(𝑛)

𝑛 .

The one caveat of this approach is that the optimization

problem is no longer a simple classification problem and

one cannot invoke an out-of-the-box ML classification oracle.

Several other approaches have been proposed in the literature

that have benefits either on the computational side or on the

statistical side, such as distributionally robust optimization

[27] (i.e. optimizing the worst case policy value over a ball

of distributions that are close to the empirical distribution),

pessimism [28] (i.e. optimizing a proxy of the lower bound of

a confidence interval for the value of a policy), out-of-sample

regularization [26] (i.e. optimizing policies that also achieve

small error on a held-out sample). This is an active area of

research, especially in the area of reinforcement learning and

is referred to in the literature as offline policy learning or

offline reinforcement learning. Even more complex is the
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11: See e.g. https:

//gssdataexplorer.norc.

org/variables/vfilter for a full

description of the variables in the

survey.

problem of adaptively collecting data and randomizing in an

adaptive manner, so as to find an optimal policy, which is

referred to in the literature as online policy learning or online

reinforcement learning. See [29] for a recent survey.

15.4 Empirical Example: The "Welfare"

Experiment

We revisit the welfare experiment dataset that we analyzed in

Chapter 14 and deploy all the methods described in this section.

We remind that this dataset corresponds to an experiment

that was run as part of the General Social Survey (GSS)
11

,

where some respondents received a questionnaire about their

willingness to support a “Welfare Program” (which will be

viewed as the treatment, i.e. 𝐷 = 1, in our analysis), while

others received the same questionnaire but the program was

referred to as “Assistance to the Poor”(which will be viewed as

the control, i.e. 𝐷 = 0, in our analysis).

After some preprocessing, the dataset contains 12907 individu-

als and 42 covariates. Instead of simply estimating the projection

of the CATE onto a simple model that is linear in the political

views variable or its one-hot-encoding, we instead train generic

ML models based on all the methods outlined in this chapter.

We then score each of the models and construct an ensemble

CATE model using Q-aggregation.

In Figure 15.24 we depict the predictions of the Q-aggregation

ensemble, as a function of the political views variable, fixing all

other covariates to their median values. We find that the fully

data-driven model did pick up political views as a relevant

variable, but the degree of variation is much smaller than

the one that is identified using the doubly robust method for

the projection of the CATE on political views. Potentially, this

demonstrates that other variables are also relevant and some

of the variation picked up by the CATE projection models

should have been attributed to other covariates that co-vary

with political views.

https://gssdataexplorer.norc.org/variables/vfilter
https://gssdataexplorer.norc.org/variables/vfilter
https://gssdataexplorer.norc.org/variables/vfilter
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Figure 15.24: CATE predictions of

the Q-aggregation stacked ensem-

ble. Gradient boosted forests (via

the xgboost library) were used as

ML oracles for regression and clas-

sification. The CATE is predicted

on a grid of income points, cor-

responding to equally spaced in-

come quantiles. All other covari-

ates were imputed at their median

values. For comparison, each plot

also displays the doubly robust

best linear predictor of the CATE

with 5-95% confidence intervals as

a linear function of the covariate

‘polviews‘ and as a linear function

of the one-hot-encoding of the co-

variate ‘polviews‘.

To understand the heterogeneity patterns that were identified

by the ensemble CATE model, we fit a single shallow binary

decision tree to the predictions of the CATE ensemble model. We

depict the learned tree in Figure 15.25. We see that political views

is indeed the single most important factor that discriminates

the predictions of the learned model, however we also see that

the ensemble model also learned that education and race also

creates heterogeneity in the reaction to programs labeled as

“welfare” (as opposed to “assistance to the poor”). In particular,

the model identified that people with more left-wing political

views and more than 15 years of education (i.e., 4-year college

educated individuals) have the least adverse reaction to the

word “welfare”, while more right wing individuals who did not

identify as black (i.e., race2=0) have the most adverse reaction

to the term “welfare”. Moreover, we see that political views

alone does not create a large variation, but it is the combination

of political views and college education that creates the largest

degree of heterogeneity in the effect.

Figure 15.25: Single binary regres-

sion tree distillation of the Q-

aggregation based stacked ensem-

ble.
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An alternative way to visualize the importance of the different

variables in changing the output of the CATE ensemble is by

using the SHAP values. In Figure 15.26. These values identify

how each individual variable contributes to changes in the

output of the ensemble model. We again identify that political

views and education create the largest variation in the output,

though here we see that other variables can also be attributed

changes in the prediction, such as the number of hours worked

last week (hrs1). We see here that having worked less hours

last week increases the output of the model, i.e., leads to less

adverse reaction to the word “welfare”. So people that worked

more hours were less eager to contribute to a program termed

“welfare”.

Figure 15.26: SHAP values for the

Q-aggreagation based stacked en-

semble in the welfare experiment

dataset.

We can also validate the learned model by running several

statistical tests on a held-out sample. For instance, in Figure 15.27

we run an OLS regression of the doubly robust outcome 𝑌(𝜂̂)
on (1, 𝜏∗(𝑋)). We find that the coefficient associated with the

stacked ensemble was statistically significant and the confidence

interval included the value 1. Hence, this validates that the

model carries significant information on the heterogeneity of
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the effect.

coef std err P> |z| [0.025 0.975]

const -0.3839 0.016 0.000 -0.416 -0.352

𝜏∗(𝑋) 1.4655 0.267 0.000 0.943 1.988

Figure 15.27: OLS statistical test re-

gression 𝑌(𝜂̂) on (1, 𝜏∗(𝑋)) in the

Criteo example. Standard Errors

are heteroscedasticity robust (HC1).

𝜏∗ corresponds to the stacked en-

semble based on Q-aggregation.

We also evaluate how calibrated the model is by depicting

the group average treatment effects for each quartile of the

predicted CATE distribution. The GATE was estimated using

the doubly robust approach on the held-out sample. We see

that the bottom and top quartiles are separated in a statistically

significant manner, while also the calibration score of the model

is quite high (0.4461).

Figure 15.28: Calibration check for

chosen ensemble model 𝜏∗ in the

welfare example. Test samples are

splitted in four groups based on

CATE predictions and CATE quan-

tiles (e.g. bottom group contains

samples whose CATE predictions

lie in the bottoms 25% of predic-

tions). The x-axis depicts the aver-

age predicted CATE within each

group based on 𝜏∗, while the y-

axis depicts the GATE as calculated

based on the doubly robust pseudo-

outcomes calculated on the test set.

Given that we identified that the bottom and top quartile are

different in a statistically significant manner, we can also visu-

alize the differences of these two groups, by simply depicting

the difference in means of each of the covariates in the two

groups. We see for instance, that hours worked last week was

significantly different in the two groups, as well as income, age,

political views and education, reinforcing our prior findings.
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group1

mean ± s.e.

group2

mean ± s.e.

group1 - group2

mean ± s.e.

hrs1 44.16 ± 0.30 36.74 ± 0.58 7.42 ± 0.88

income 11.52 ± 0.03 10.61 ± 0.10 0.92 ± 0.12

rincome 10.58 ± 0.05 9.23 ± 0.14 1.35 ± 0.19

age 41.75 ± 0.27 37.52 ± 0.49 4.23 ± 0.76

polviews 4.39 ± 0.03 3.07 ± 0.05 1.32 ± 0.08

educ 13.58 ± 0.06 15.41 ± 0.11 -1.82 ± 0.17

earnrs 1.81 ± 0.02 1.60 ± 0.03 0.21 ± 0.05

sibs 3.40 ± 0.06 3.42 ± 0.14 -0.02 ± 0.20

childs 1.68 ± 0.03 1.24 ± 0.06 0.44 ± 0.09

occ80 351.52 ± 5.66 280.24 ± 8.53 71.28 ± 14.19

Figure 15.29: Group differences

between the top 25% predicted

CATE group (group2) and the bot-

tom 25% predicted CATE group

(group1) in the welfare example.

We can also visualize the differences between the two groups by

fitting a shallow binary classification tree to predict membership

in the top quartile vs bottom quartile groups. We see again

that political views, education and race are the most important

distinguishing factors for membership in the two groups. For

instance, as we see in Figure 15.30, in the held-out dataset,

among the 309 college-educated and left-wing individuals, only

5 were in the bottom quartile group (which had a statistically

signficant more adverse reaction to welfare), while 304 were in

the top quartile group. Similarly, among the 1622 right-wing

and not black individuals, 1541 were in the bottom quartile

group vs. 81 in the top quartile group.

Figure 15.30: Decision tree that dis-

tills the main differences between

group1 and group2 as defined in

Figure 15.29.

Finally, we can verify that we detected a statistically significant

heterogeneity of effect by looking at the uplift curves, i.e. the

TOC (c.f. Figure 15.31) and QINI (c.f. Figure 15.32) curves. We

find that both curves lie above the zero line, even when we
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incorporate one-sided confidence bands. The largest lower point

of this confidence band is depicted as a heterogeneity statistic

in the title. For instance, we see that the largest lower point

is 0.1039 in the TOC curve, which occurs at roughly 5%. This

means that, with 95% confidence level, if we look at the group

that corresponds to the top 5% of the CATE predictions, then we

expect to see an average effect within that group that is at least

0.1039 larger than the average effect in the overall population.

Figure 15.31: TOC curve with a 95%

one-sided confidence band for the

welfare experiment dataset.

Similarly, in the QINI curve we find that this heterogeneity

statistic is 0.0164 and occurs at roughly 30%, which means that

if were to treat the group of people that corresponds to the top

30% of CATE predictions, then we would expect to get a total

effect in the population that is 0.0164 larger than if we were to

treat a random 30% fraction of the population.
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Figure 15.32: QINI curve with a

95% one-sided confidence band for

the welfare experiment dataset.

We can also calcualte the area under these curves and the

confidence interval for that area. If the confidence interval does

not contain zero, then we have again detected heterogeneity

with statistical significance.

AUTOC s.e. One-Sided 95% CI

0.0667 0.0128 [0.0457, Infty]

AUT Qini s.e. One-Sided 95% CI

0.0232 0.0046 [0.0156, Infty]

15.5 Empirical Example: Digital

Advertising A/B Test

We now revisit the example introduced in Section ?? and ap-

ply the CATE estimation pipeline outlined in this section. In

Figure 15.33 we depict the performance of each of the meta-

learners, compared to the performance of a baseline model

that fits a constant treatment effect, as measured by the doubly

robust score (see Theorem 15.2.1). Note that since here we are

in a randomized trial, the propensity is known and hence the

rate requirements in that theorem are satisfied. We see that all

meta-learners perform better than a constant effect, indicating

statistically significant heterogeneity. Moreover, we see that all

learners except the S-learner have comparable performance.
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Figure 15.33: Performance (and

95% confidence intervals) of meta-

learner models in the Criteo exam-

ple compared to a constant effect

model, as measured by the Doubly

Robust score.

We also compared the meta-learning approach to the Best-

Linear-Predictor approach presented in the prior chapter on

heterogeneous treatment effects. Instead of learning a CATE

model using all the features, we fitted the best linear CATE when

using only feature ‘f3‘ or a second degree polynomial of that

feature. We find that this BLP approach in this setting is quite

un-stable due to poor extrapolation behavior. In particular, the

feature ‘f3‘ has very heavy negative tails (see Figure 15.35). The

different parametric models overfit the parametric curve to the

region of high density and extrapolate very poorly in the heavy

negative tail. On the contrary the Q-aggregation ensemble

of the meta-learning models is more stable and regularizes

appropriately in this regime.

Figure 15.34: Predictions of the Q-

aggregation stacked ensemble and

of the Doubly Robust BLP of CATE

as a linear or quadratic function of

feature ‘f3‘ in Criteo example.
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Figure 15.35: Histogram of distri-

bution of feature ‘f3‘

We then validate the Q-aggregation ensemble using all the

validation methods presented in this chapter. In Table 15.36 we

run an OLS regression of the doubly robust pseudo-outcome

on the CATE predictions and an intercept. We find that the

coefficient of the CATE predictor is very accurately estimated

to be 1.

coef std err P> |z| [0.025 0.975]

const 0.0074 0.000 0.000 0.007 0.008

𝜏∗(𝑋) 1.0096 0.036 0.000 0.940 1.079

Figure 15.36: OLS statistical test re-

gression 𝑌(𝜂̂) on (1, 𝜏∗(𝑋)) in the

Criteo example. Standard Errors

are heteroscedasticity robust (HC1).

𝜏∗ corresponds to the stacked en-

semble based on Q-aggregation.

We also see that the predictions of the CATE model are very

well calibrated and the doubly robust GATE estimates for each

quartile of CATE prediction groups lies almost on the 45 degree

line, with a calibration score that is very close to 1.
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Figure 15.37: Calibration check for

chosen ensemble model 𝜏∗ in the

welfare example. Test samples are

splitted in four groups based on

CATE predictions and CATE quan-

tiles (e.g. bottom group contains

samples whose CATE predictions

lie in the bottoms 25% of predic-

tions). The x-axis depicts the aver-

age predicted CATE within each

group based on 𝜏∗, while the y-

axis depicts the GATE as calculated

based on the doubly robust pseudo-

outcomes calculated on the test set.

The TOC and Qini Curves are depicted in Figure 15.38 and

Figure 15.39, with one-sided 95% uniform confidence bands.

We see that there is statistically significant heterogeneity as

these curves lie well above the zero line. For instance, the TOC

curve tells as that if we treat roughly the group that corresponds

to roughly the top 5% of CATE predictions then we should

expect that the average treatment effect of that group to be

approximately 0.07 larger than the average treatment effect.

Moreover, the Qini curve tells us that if we treat approximately

the group that corresponds to the top 15% of CATE predictions,

then we should expect the total effect of such a treatment policy

to be ≈ 0.005 larger than the total effect if we were to treat a

random 15% subset of the population. Thus our CATE model

carries significant information that is valuable for better ad

targeting.
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Figure 15.38: TOC curve with a 95%

one-sided confidence band for the

digital advertising dataset.

Figure 15.39: QINI curve with a

95% one-sided confidence band for

the digital advertising dataset.

15.A Appendix: Lower Bound on

Variance in Model Comparison

First we observe that:

Δ𝑖 , 𝑗 := (𝑌(𝜂0) − 𝜏𝑖(𝑋))2 − (𝑌(𝜂0) − 𝜏𝑗(𝑋))2

= 𝜏𝑖(𝑋)2 − 𝜏𝑗(𝑋)2 − 2𝑌(𝜂0)(𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))
= (𝜏𝑖(𝑋) − 𝜏𝑗(𝑋)) (𝜏𝑖(𝑋) + 𝜏𝑗(𝑋) − 2𝑌(𝜂0))
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and note that:

V𝑛 = EΔ2

𝑖 , 𝑗 −
(
EΔ𝑖 , 𝑗

)
2

Moreover,

EΔ2

𝑖 , 𝑗 = E

[
(𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))2 E

[
(𝜏𝑖(𝑋) + 𝜏𝑗(𝑋) − 2𝑌(𝜂0))2 | 𝑋

] ]
By a variance decomposition argument and since 𝜏0(𝑋) =
E(𝑌(𝜂0) | 𝑋):

E

[
(𝜏𝑖(𝑋) + 𝜏𝑗(𝑋) − 2𝑌(𝜂0))2 | 𝑋

]
= 4 Var(𝑌(𝜂0) | 𝑋) + E

[
(𝜏𝑖(𝑋) + 𝜏𝑗(𝑋) − 2𝜏0(𝑋))2 | 𝑋

]
Thus we have derived that:

EΔ2

𝑖 , 𝑗 = 4E

[
(𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))2 Var(𝑌(𝜂0) | 𝑋)

]
+ E

[
(𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))2 (𝜏𝑖(𝑋) + 𝜏𝑗(𝑋) − 2𝜏0(𝑋))2

]
Moreover, note that by Jensen’s inequality:(

EΔ𝑖 , 𝑗
)

2

=
(
E(𝜏𝑖(𝑋) − 𝜏𝑗(𝑋)) (𝜏𝑖(𝑋) + 𝜏𝑗(𝑋) − 2𝜏0(𝑋))

)
2

≤ E(𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))2 (𝜏𝑖(𝑋) + 𝜏𝑗(𝑋) − 2𝜏0(𝑋))2

Thus we can conclude that:

V𝑛 ≥ 4E

[
(𝜏𝑖(𝑋) − 𝜏𝑗(𝑋))2 Var(𝑌(𝜂0) | 𝑋)

]
(15.A.1)

15.B Appendix: Interpretation of Uplift

curves

We derive first the covariance interpretation of the TOC uplift

curve.

TOC(𝑞) = E[𝑌(1) − 𝑌(0) | 𝜏̂(𝑋) ≥ 𝜇(𝑞)] − E[𝑌(1) − 𝑌(0)]

= E

[
(𝑌(1) − 𝑌(0))1{𝜏̂(𝑋) ≥ 𝜇(𝑞)}

P(𝜏̂(𝑋) ≥ 𝜇(𝑞))

]
− E[𝑌(1) − 𝑌(0)]

Let 𝐴 = 𝑌(1)−𝑌(0) and 𝐵 =
1{𝜏̂(𝑋)≥𝜇(𝑞)}
P(𝜏̂(𝑋)≥𝜇(𝑞)) and note that E[𝐵] = 1.

Thus we have:

TOC(𝑞) = E [𝐴𝐵] − E[𝐴] = E [𝐴𝐵] − E[𝐴]E[𝐵] = Cov(𝐴, 𝐵)

Next, we derive the covariance interpretation of the QINI uplift

curve. Let 𝐴 = 𝑌(1) − 𝑌(0) and 𝐵 = 𝜏̂(𝑍) ≥ 𝜇(𝑞). Then by the
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definition of the QINI curve:

𝜏QINI(𝑞) := 𝜏(𝑞)P(𝜏̂(𝑍) ≥ 𝜇̂(𝑞))
= (E[𝐴 | 𝐵] − E[𝐴]) P(𝐵)

=

(
E[𝐴𝟙{𝐵}

P(𝐵) ] − E[𝐴]
)

P(𝐵)

= E[𝐴𝟙{𝐵}] − E[𝐴]E[𝟙{𝐵}] = Cov (𝐴, 𝟙{𝐵})
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