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"Better LATE than nothing."

– Guido Imbens [1].

Here, we specialize DML methods to partially linear models

with instruments, arising either through endogeneity of the

policy variable or through the use of proxy controls as outlined

in Chapter 12. We also present DML methods for LATE param-

eters in the fully nonlinear model with a binary endogenous

treatment and binary instrument. We further examine how

DML inference method can be modified to cope with weak in-

struments and weak identification in generic moment problems

through the use of Neyman orthogonal scores and Neyman’s

𝐶(𝛼) statistic.
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13.1 DML Inference in Partially Linear IV

Models

Here we consider estimation of parameters that obey the fol-

lowing instrumental variable exclusion restriction:

E[𝜖�̃�] = 0,

where

𝜖 := �̃� − 𝜃′
0
�̃�,

and

�̃� = 𝑌 − ℓ0(𝑋), ℓ0(𝑋) = E[𝑌 | 𝑋],

�̃� = 𝐷 − 𝑟0(𝑋), 𝑟0(𝑋) = E[𝐷 | 𝑋],

�̃� = 𝑍 − 𝑚0(𝑋), 𝑚0(𝑋) = E[𝑍 | 𝑋].

Here we take the dimension of �̃� to be the same as that of �̃�

for simplicity.

Two key examples leading to this statistical structure are

▶ the partially linear instrumental variable model and

▶ the partially linear model with proxy controls.

We discussed these examples and showed they fit into this

structure in Chapter 12.

To estimate and perform inference on 𝜃0, we can apply the

general DML algorithm with the score

𝜓(𝑊 ;𝜃, 𝜂) := (𝑌 − ℓ (𝑋) − 𝜃′(𝐷 − 𝑟(𝑋)))(𝑍 − 𝑚(𝑋)), (13.1.1)

where 𝑊 = (𝑌, 𝐷, 𝑋, 𝑍) and 𝜂 = (ℓ , 𝑚, 𝑟) with ℓ , 𝑚, and 𝑟

being 𝑃-square-integrable functions mapping the support of 𝑋

to ℝ. Under the exclusion restriction and using the definition

of the nuisance functions, we have that

E[𝜓(𝑊 ;𝜃0, 𝜂0)] = 0.

It is not difficult to check that the Neyman orthogonality condi-

tion,

𝜕𝜂E[𝜓(𝑊 ;𝜃0, 𝜂0)] = 0,

holds at the true value𝜂0 = (ℓ0, 𝑚0, 𝑟0)of the nuisance parameters. Verify Neyman-orthogonality for

yourself as an exercise.

We now explicitly restate the DML algorithm specialized to this

case of partially linear IV models.
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DML for Partially Linear IV and Proxy Models

1. Partition data indices into 𝑘 folds of approximately

equal size: {1, ..., 𝑛} = ∪𝐾
𝑘=1
𝐼𝑘 . For each fold 𝑘 =

1, ..., 𝐾, compute ML estimators ℓ̂[𝑘](𝑋), �̂�[𝑘](𝑋),
𝑟[𝑘](𝑋) of the best predictors ℓ0(𝑋), 𝑚0(𝑋), 𝑟0(𝑋), leav-

ing out the 𝑘-th block of data, and obtain the cross-

fitted residuals for each 𝑖 ∈ 𝐼𝑘 :

�̌�𝑖 = 𝑌𝑖 − ℓ̂[𝑘](𝑋𝑖),
�̌�𝑖 = 𝐷𝑖 − 𝑟[𝑘](𝑋𝑖),
�̌�𝑖 = 𝑍𝑖 − �̂�[𝑘](𝑋𝑖).

2. Compute the standard IV regression of �̌�𝑖 on �̌�𝑖 using

�̌�𝑖 as the instrument. That is, obtain �̂� as the root in

𝜃 of the following equation:

𝔼𝑛[(�̌� − 𝜃′�̌�)�̌�] = 0.

3. Construct standard errors and confidence intervals

as in the standard linear instrumental variables re-

gression theory.

In what follows it will be convenient to use the following

notation

∥ℎ∥𝐿2 :=
√

E𝑋[ℎ2(𝑋)],

where, as before, E𝑋 computes the expectation over values of

𝑋.

Theorem 13.1.1 (Adaptive Inference in the Partially Linear

IV Model) Impose technical regularity conditions as in [2] which
include the following key conditions: (1) the instruments are strong
– namely, the singular values of E[�̃��̃�] are well-separated from
zero – and (2) the estimators ℓ̂[𝑘](𝑋), �̂�[𝑘](𝑋), and 𝑟[𝑘](𝑋) provide
high-quality approximations to the best predictors ℓ0(𝑋), 𝑚0(𝑋),
and 𝑟0(𝑋) – namely,

𝑛1/4∥ℓ̂[𝑘] − ℓ0∥𝐿2 ≈ 0, 𝑛1/4∥�̂�[𝑘] − 𝑚0∥𝐿2 ≈ 0,

and
𝑛1/4∥𝑟[𝑘] − 𝑟0∥𝐿2 ≈ 0.

Then the estimation error in �̌�𝑖 and �̌�𝑖 has no first order effect on
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the behavior of �̂�:
√
𝑛(�̂� − 𝜃0) ≈ (𝔼𝑛[�̃��̃�])−1

√
𝑛𝔼𝑛[�̃�𝜖],

As a result, �̂� concentrates in a 1/
√
𝑛 neighborhood of 𝜃 with

deviations approximated by the Gaussian law:
√
𝑛(�̂� − 𝜃0) a∼ 𝑁(0, V),

where
V = (E[�̃��̃�′])−1

E[�̃��̃�′𝜖2](E[�̃��̃�])−1.

The standard error of �̂� is estimated as

√
V̂/𝑛, where V̂ is an

estimator of V based on the plug-in principle. The result implies

that the confidence interval

[�̂� − 2

√
V̂/𝑛, �̂� + 2

√
V̂/𝑛]

covers 𝜃 for approximately 95% of the realizations of the sample.

In other words, if our sample is not atypical, the interval covers

the truth.

The Effect of Institutions on Economic Growth

The Notebooks 13.5.2 implement

the AJR example.
To demonstrate DML estimation of partially linear structural

equation models with instrumental variables, we consider es-

timating the effect of institutions on aggregate output follow-

ing the work of Acemoglu, Johnson, and Robinson (2001) [3]

(AJR).

We use the same set of 64 country-level observations as AJR.

The outcome variable, 𝑌, is the logarithm of GDP per capita

and the endogenous explanatory variable, 𝐷, is an index which

measures protection against expropriation risk that is used as a

proxy for the strength of institutions. To deal with endogeneity,

we use an instrumental variable 𝑍, which is mortality rates for

early European settlers. Our raw set of control variables, 𝑋,

include distance from the equator and dummy variables for

Africa, Asia, North America, and South America.

Estimating the effect of institutions on output is complicated

by the clear potential for simultaneity between institutions and

output: Better institutions may generate higher incomes, but

higher incomes may also lead to the development of better

institutions. To help overcome this simultaneity, AJR use mor-

tality rates for early European settlers as an instrument for

institution quality. The validity of this instrument hinges on

the argument that settlers set up better institutions in places
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where they were more likely to establish long-term settlements,

that where they were likely to settle for the long term is related

to settler mortality at the time of initial colonization, and that

institutions are highly persistent. The exclusion restriction for

the instrumental variable is then motivated by the argument

that GDP, while persistent, is unlikely to be strongly influenced

by mortality in the previous century, or earlier, except through

institutions.

In their paper, AJR note that their instrumental variable strategy

will be invalidated if other factors are also highly persistent and

related to the development of institutions within a country and

to the country’s GDP. A leading candidate for such a factor, as

they discuss, is geography. AJR address this by assuming that

the confounding effect of geography is adequately captured by

a linear term in distance from the equator and a set of continent

dummy variables. Using DML allows us to relax this assumption

and replace it by a weaker assumption that geography can be

sufficiently controlled by an unknown function of distance from

the equator and continent dummies which can be learned by

ML methods.

We present the verbal identification argument above in the

form of a DAG in Figure 13.1. In the DAG, 𝑌 is wealth, 𝑂 the

quality of early institutions,𝐷 the quality of modern institutions,

𝑋 observed measures of geography, 𝑍 early settler mortality,

𝐴 the present day latent factors jointly determining modern

institutions and wealth, and 𝐿 early latent factors affecting early

settler mortality. Applying the IV method here requires the

identification of the causal effect of 𝑍→ 𝐷 and 𝑍→ 𝑌. From

the DAG, we see that 𝑋 blocks the backdoor paths from 𝑌 to 𝑍

and from 𝐷 → 𝑍. This means that the instrument satisfies the

required exogeneity condition conditional on 𝑋.

𝐿

𝑍 𝑂 𝐷 𝑌

𝑋 𝐴
Figure 13.1: DAG for the Effect of

Quality of Institutions on Wealth.

We think the story sounds plausible, but it is always impor-

tant to consider threats to identification. The direct threat to

identification would be if 𝐿 directly affected 𝑍 and either 𝑂, 𝐷,

or 𝑌, or, in words, if early latent factors directly affected early

settler mortality and either present-day quality of institutions

or present day wealth. In such cases we would need to include
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Lasso Forest Best

0.73 0.86 0.86

(0.19) (0.33) (0.33)

Note: Estimated coefficient from DML based estimation of a the partially

linear instrumental variables model in the AJR example. Column labels

denote the method used to estimate nuisance functions. The random

forest produces lower cross-fit RMSEs for predicting each of 𝑌, 𝐷, and

𝑍, so "Best" and "Random Forest" are identical.

Table 13.1: DML Estimates of the

Effect of Institutions on Output

1: It is good to revisit their analy-

sis using ML tools. See their Data

archive to get started.

𝐿 as additional controls. 𝐿 could represent many different latent

factors. For example, one might conjecture that the religion of

early European settlers (e.g., Catholic vs Protestant) is related

to the type of institutions they would establish and to their

mortality rates upon colonization. In their original study, AJR

did examine this threat by checking robustness of their result

with respect to the inclusion of religion variables. They also ex-

amined the use of other additional controls to assess robustness

to other potential sources of confounding.
1

We report results from applying DML following the procedure

outlined in Section 9.4 in Table 13.1. For cross-fitting, we use

5 folds. Here we just tried two methods, Lasso with plug-in

tuning and Random Forests with package defaults, for learning

the nuisance functions 𝜂. As predictors in the Lasso estimates,

we used a dictionary formed by taking latitude and latitude
2

interacted with continent dummies as technical controls. For

the Random Forest estimates, we simply include latitude and

continent dummies as raw controls. The Random Forest predicts

outcomes 𝑌, 𝐷, and 𝑍 better than Lasso. The resulting best

DML estimate is therefore based on DML with Random Forest

used in all ML steps.

In this example, we see uniformly large and positive point esti-

mates across all procedures considered, and estimated effects

are statistically significant at the 5% level in all cases. We note

the estimates are somewhat smaller than the baseline estimates

reported in AJR – an estimated coefficient of 1.10 with estimated

standard error of 0.46 ([3], Table 4, Panel A, column 7) – but are

qualitatively similar, indicating a strong and positive effect of

institutions on output.

https://economics.mit.edu/faculty/acemoglu/data/ajr2001
https://economics.mit.edu/faculty/acemoglu/data/ajr2001
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13.2 DML Inference in the Interactive IV

Regression Model (IRM)

DML Inference on LATE

In this section, we consider estimation of local average treatment

effects (LATE) with a binary treatment variable, 𝐷 ∈ {0, 1},
and a binary instrument, 𝑍 ∈ {0, 1}. As before, 𝑌 denotes the

outcome variable, and 𝑋 is the vector of covariates. Consider

the following statistical parameter:

𝜃0 =
E[E[𝑌 | 𝑍 = 1, 𝑋] − E[𝑌 | 𝑍 = 1, 𝑋]]
E[E[𝐷 | 𝑍 = 1, 𝑋] − E[𝐷 | 𝑍 = 0, 𝑋]] .

This parameter is the ratio of the average predictive effects of 𝑍

on 𝑌 and of 𝐷 on 𝑌. Under the assumptions laid out in Chapter

12, this statistical parameter is a causal parameter – the average

treatment effect for compliers (LATE).

To set up estimation, define the regression functions:

𝜇0(𝑍, 𝑋) = E[𝑌 | 𝑍, 𝑋]
𝑚0(𝑍, 𝑋) = E[𝐷 | 𝑍, 𝑋]
𝑝0(𝑋) = E[𝑍 | 𝑋].

Define the nuisance parameter 𝜂 = (𝜇, 𝑚, 𝑝) to denote square-

integrable functions 𝜇, 𝑚, and 𝑝, with 𝜇 mapping the support

of (𝑍, 𝑋) toℝ and𝑚 and 𝑝 respectively mapping the support of

(𝑍, 𝑋) and 𝑋 to (𝜀, 1 − 𝜀) for some 𝜀 ∈ (0, 1/2). The true value

of the nuisance parameter is 𝜂0 = (𝜇0, 𝑚0, 𝑝0), the regression

functions defined above.

The DML estimator of 𝜃0 employs the orthogonal score

𝜓(𝑊 ;𝜃, 𝜂) := 𝜇(1, 𝑋) − 𝜇(0, 𝑋) + 𝐻(𝑝)(𝑌 − 𝜇(𝑍, 𝑋))

−
(
𝑚(1, 𝑋) − 𝑚(0, 𝑋) + 𝐻(𝑝)(𝐷 − 𝑚(𝑍, 𝑋)

)
𝜃,

for𝑊 = (𝑌, 𝐷, 𝑋, 𝑍) and

𝐻(𝑝) :=
𝑍

𝑝(𝑋) −
(1 − 𝑍)

1 − 𝑝(𝑋) .

It is easy to verify that this score satisfies the moment condi-

tion

E[𝜓(𝑊 ;𝜃0, 𝜂0)] = 0
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and also the Neyman orthogonality condition

𝜕𝜂E[𝜓(𝑊 ;𝜃0, 𝜂0)] = 0

at the true value 𝜂0 = (𝜇0, 𝑚0, 𝑝0) of the nuisance parameter. Verifying both claims is a good ex-

ercise.

Therefore we can apply the generic ML algorithm to this prob-

lem, including the selection of the best ML methods to estimate

the nuisance parameters.

Theorem 13.2.1 (DML for LATE) Suppose conditions specified
in [2] hold. In particular, suppose that the overlap condition holds;
namely, for some 𝜖 > 0 with probability 1,

𝜖 < 𝑝0(𝑋) < 1 − 𝜖.

Further, suppose 𝜖 < �̂�[𝑘](𝑋) < 1 − 𝜖 and that estimators �̂�[𝑘],
�̂�[𝑘], �̂�[𝑘] provide high-quality approximation to 𝑝0, 𝑚0, and 𝜇0 in
the sense that

𝑛1/2∥ �̂�0 − 𝑝0∥𝐿2 ×
(
∥�̂�0 − 𝜇0∥𝐿2 + ∥�̂�0 − 𝑚0∥𝐿2

)
≈ 0.

Then estimation of the nuisance parameters does not affect the
behavior of the estimator to the first order; namely,

√
𝑛(�̂� − 𝜃0) ≈

√
𝑛𝔼𝑛[𝜑0(𝑊)],

where

𝜑0(𝑊) = −𝐽−1

0
𝜓(𝑊 ;𝜃0, 𝜂0), 𝐽0 := E

[
𝑚0(1, 𝑋) − 𝑚0(0, 𝑋)

]
.

Consequently, �̂� concentrates in a 1/
√
𝑛-neighborhood of 𝜃0 and

the sampling error
√
𝑛(�̂� − 𝜃0) is approximately normal

√
𝑛(�̂� − 𝜃0) a∼ 𝑁(0, V), V := E[𝜑0(𝑊)𝜑0(𝑊)′].

Variance estimation and confidence intervals are constructed

as in the generic DML algorithm.

The Effect of 401(k) Participation on Net Financial

Assets

The Notebooks 13.5.3 implement

DML estimation of the LATE of

401(k) participation.

Here we continue to re-analyze the effects of 401(k)’s on house-

hold financial assets, picking up from Section 9.3. In this section,

we report the LATE where we take the endogenous treatment

variable to be participating in a 401(k) plan using 401(k) eligibility
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Lasso Tree Forest Boost Best Ensemble

Estimate -5151 11320 11921 11153 11575 11471

Std. Error (19243) (1795) (2023) (1652) (1625) (1623)

RMSE D 0.275 0.285 0.282 0.274 0.274 0.274

RMSE Z 0.448 0.457 0.459 0.443 0.443 0.443

RMSE Y 60980 57293 54855 55133 54855 54178

Note: Estimated LATE and standard errors from the fully interactive

IV model. Column labels denote the method used to estimate nuisance

functions. For Lasso, we report results based on using ℓ2 penalized logistic

regression to estimate E[𝐷 |𝑋] and E[𝑍 |𝑋]. The first row provides the

point estimate of the LATE, and the second row provides the standard

error. Rows RMSE D, RMSE Z, and RMSE Y respectively report the

cross-fitted RMSE for predicting 𝐷, 𝑍, and 𝑌.

Table 13.2: Estimated Effect of

401(k) Participation on Net Finan-

cial Assets

as instrument. Even after controlling for features related to

job choice, it seems likely that the actual choice of whether to

participate in an offered plan would be endogenous. Of course,

we can use eligibility for a 401(k) plan as an instrument for

participation in a 401(k) plan under the conditions that were

used to justify the exogeneity of eligibility for a 401(k) plan

outlined in Section 9.3.

We report DML results of estimating the LATE of 401(k) partic-

ipation using 401(k) eligibility as an instrument in Table 13.2.

We employ the procedure outlined in Section 13.2 using the

same ML estimators to estimate the quantities used to form the

orthogonal estimating equation as we employed to estimate the

ATE of 401(k) eligibility in Section 9.3. Looking at the results, we

see that the Lasso does a very poor job predicting the outcome

relative to the other considered learners and returns a negative

and very imprecise coefficient estimate. The remaining learners

all have similar predictive performance for each of 𝑌, 𝐷, and 𝑍

and return similar estimates and standard errors. It is reassuring

that the results obtained from the different flexible methods

with similar predictive performance are broadly consistent with

each other.

It is also interesting that the results based on flexible ML meth-

ods are broadly consistent with, though somewhat attenuated

relative to, those obtained by applying the same specification

for controls as used in [4] and [5] and using a linear IV model

which returns an estimated effect of participation of $13,102

with estimated standard error of (1922). The attenuation may

suggest that the simple intuitive control specification used in

the original baseline specification is not sufficiently flexible.
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13.3 DML Inference with Weak

Instruments

Motivation

As a simple motivating example, consider an instrumental

variables model with a one-dimensional endogenous variable

𝐷 when there are either no controls or we are able to partial

them out perfectly. In this case, the IV estimator takes the form

�̂� = 𝔼𝑛[�̃��̃�]/𝔼𝑛[�̃��̃�],

and we have that

√
𝑛(�̂� − 𝜃) =

√
𝑛𝔼𝑛[�̃�𝜖]/𝔼𝑛[�̃��̃�].

When 𝔼𝑛[�̃��̃�] is well-separated away from zero, we invoke the

approximation

√
𝑛𝔼𝑛[�̃�𝜖]/𝔼𝑛[�̃��̃�] a∼ 𝑁(0, E[�̃�2𝜖2])/E[�̃��̃�]. (13.3.1)

However, this approximation is not reliable when instruments

are "weak" – when 𝔼𝑛[�̃��̃�] appears close to zero. "Weak identification" (or "weak in-

struments" in IV models) refers to

settings in which we cannot confi-

dently conclude a testable identify-

ing assumption holds in our data.

In our simple IV model, the pa-

rameter 𝜃 is not identified when

E[�̃��̃�] = 0 as solving the popu-

lation moment condition requires

solving E[�̃��̃�]𝜃 = E[�̃��̃�].

Intuitively,

we may worry that small changes in a sample that result in

relatively small changes in 𝔼𝑛[�̃��̃�]may still have large impacts

on the estimator �̂� when 𝔼𝑛[�̃��̃�] is near zero because 𝔼𝑛[�̃��̃�]
shows up in the denominator. That is, (13.3.1), which essentially

ignores sampling variation in 𝔼𝑛[�̃��̃�], may provide a very poor

approximation to the actual finite sample sampling behavior of

the IV estimator in this case.

We illustrate the potential poor performance of the usual asymp-

totic approximation (13.3.1) in Figure 13.2 which reports results

from a simulation experiment in which E[�̃��̃�] is close to zero.

Here we see the sampling distribution (given by the blue curve)

of the IV estimator deviates strongly from the normal approx-

imation (given by the red curve). Note that by varying how

close E[�̃��̃�] is to zero, one can make the differences more or

less pronounced.

In principle, we can detect the weak instrument problem by

testing whether 𝛽 = 0 in the projection equation

�̃� = 𝛽�̃� +𝑈, E[�̃��̃�].

The usual asymptotic approximation relies on E[�̃��̃�] being so

far from zero that we can ignore finite sample variability in the
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Figure 13.2: Actual sampling distri-

bution of the IV estimator (blue) vs

the normal approximation of the IV

Estimator (red) in a simulation ex-

periment using a weak instrument.

empirical analog of this expectation. Note that this statement

essentially says that we need to be sure that 𝛽 ≠ 0 before we

use the usual asymptotic approximation.

There are a variety of "rules of thumb" These are rules of thumb as they are

based on simulations rather than

formal justification.

for when to conclude

instruments are strong in the literature. Staiger and Stock (1997)

[6] suggested the most common rule of thumb used in practice.

In the one endogenous variable, one instrument case, this rule

of thumb corresponds to using the usual asymptotic approxima-

tion when the first stage t-statistic for testing the null hypothesis

that 𝛽 = 0, |�̂� − 𝛽 |/se(�̂�), is bigger than

√
10 ≈ 3.16. This rule of

thumb can unfortunately be very optimistic in that confidence

intervals based on the usual asymptotic approximation may

have coverage far from the stated coverage level – e.g. a 95%

confidence interval may cover the true parameter value in far

fewer than 95% of repeated samples – even when this condition

is satisfied. Hansen, Hausman, and Newey [7] suggest a differ-

ent rule of thumb which reduces to using the usual asymptotic

approximation when the first stage t-statistic for testing the null

hypothesis that 𝛽 = 0 is greater than 5.6 in the one endogenous

variable one instrument case. More recent work, e.g. Andrews

(2018) [8], suggests that one should be cautious in applying any

such rule of thumb. A related caution is that basing in-

ference on the usual asymptotic ap-

proximation after seeing the result

of a test for the strength of associ-

ation between �̃� and �̃� can intro-

duce substantial pre-test bias that

further distorts inference. See An-

drews, Stock, and Sun (2019) [9].

All of these results suggest that the usual asymptotic approxi-
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mation may not be safe if we are worried that our instruments

are not strongly related to the endogenous variables. If we have

such worries, is there anything else we can do?

Of course there is. There are a variety of alternative inferen-

tial procedures whose behavior does not hinge on the well-

separation of 𝔼𝑛[�̃��̃�] from zero. Here, we consider one specific

approach based upon the statistic The statistic𝐶(𝜃) is Neyman’s𝐶(𝛼)
statistic [10]. In the case we con-

sider here, the statistic is essentially

the same as considered in Ander-

son and Rubin (1949) [11] without

imposing homoskedasticity as in

Stock and Wright (2000) [12].

𝐶(𝜃) = |𝔼𝑛[(�̃� − 𝜃�̃�)�̃�]|2

𝕍𝑛[(�̃� − 𝜃�̃�)�̃�]/𝑛
.

If 𝜃0 = 𝜃, then 𝐶(𝜃) a∼ 𝑁(0, 1)2 = 𝜒2(1). Therefore, we can

reject the hypothesis 𝜃0 = 𝜃 at level a (for example a = .05 for

a 5% level test) if 𝐶(𝜃) > 𝑐(1 − a)where 𝑐(1 − a) is the (1 − a)-
quantile of a 𝜒2(1) variable. The probability of falsely rejecting

the true hypothesis is approximately a × 100%. To construct

a (1 − a) × 100% confidence region for 𝜃, we can then simply

invert the test by collecting all parameter values that are not

rejected at the a level:

𝐶𝑅(𝜃) = {𝜃 ∈ Θ : 𝐶(𝜃) ≤ 𝑐(1 − a)}.

In more complex settings with many controls or controls that

enter with unknown functional form, we can simply replace the

residuals �̃�, �̃�, and �̃� by machine learned cross-fitted residuals

�̌�, �̌�, and �̌�. Thanks to the orthogonality of the IV moment

condition underlying the formulation outlined above, we can

formally assert that the properties of 𝐶(𝜃) and the subsequent

testing procedure and confidence region for 𝜃 continue to hold

when using cross-fitted residuals. We will further be able to

apply the general procedure to cases where 𝐷 is a vector, with

a suitable adjustment of the statistic 𝐶(𝜃).

DML Inference Robust to Weak-IV in PLMs

Here, we present a more general version of weak identification

robust inference, including implementation and theoretical

details, in settings where we want to use machine learning to

aid in controlling for confounding variables 𝑋.

DML Weak-IV-Robust Inference for PLIV Model

1. Initialize: Let Θ be a known parameter space that

contains the true value 𝜃0. Using the DML-PLIV
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algorithm, produce the cross-fitted residuals: �̌�𝑖 , �̌�𝑖 ,

and �̌�𝑖 . Using the cross-fitted residuals and for 𝜃 ∈ Θ,

compute the moment function

M̌(𝜃) := 𝔼𝑛[(�̌�𝑖 − 𝜃′�̌�𝑖)�̌�𝑖],

the empirical covariance function

Ω̌(𝜃) := 𝕍𝑛[(�̌� − 𝜃′�̌�)�̌�],

and the score statistic

𝐶(𝜃) := 𝑛M̌(𝜃)′Ω̌−1(𝜃)M̌(𝜃).

2. Robust Confidence Region: Construct the approxi-

mate (1 − a) × 100% confidence region as

𝐶𝑅(𝜃0) = {𝜃 ∈ Θ : 𝐶(𝜃) ≤ 𝑐(1 − a)},

where 𝑐(1− a) := (1− a)-quantile of a 𝜒2(𝑚) variable,

where 𝑚 = dim(𝑍𝑖).

In order to state the next result, define the oracle version of the

moment and covariance functions given in Step 1 of the DML

Weak-IV-Robust Inference algorithm,

M̂(𝜃) = 𝔼𝑛[(�̃� − 𝜃′�̃�)�̃�]

and

Ω̂(𝜃) = 𝕍𝑛[(�̃� − 𝜃′�̃�)�̃�],

which are defined in terms of the true residuals �̃�𝑖 , �̃�𝑖 , and

�̃�𝑖 .

Theorem 13.3.1 Under regularity conditions, estimation of the
nuisance parameters does not affect the behavior of the 𝐶(𝜃) statistic
in the sense that

𝐶(𝜃0) ≈ 𝑛M̂(𝜃0)′Ω̂−1(𝜃0)M̂(𝜃0) 𝑎∼ 𝜒2(𝑚).

Consequently, the test rejects the true value with approximate
probability a,

P(𝐶(𝜃) ≥ 𝑐(1 − a)) ≈ a,

and the confidence region 𝐶𝑅(𝜃0) contains 𝜃0 with approximate
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probability (1 − a),

P(𝜃0 ∈ 𝐶𝑅(𝜃0)) ≈ (1 − a).

The Effect of Institutions on Economic Growth

Revisited

We illustrate the use of DML weak identification robust inference

by revisiting the AJR example from Section 13.1. Recall that

Random Forests performed best in all auxiliary predictive steps

in our original exercise in this example, so we only consider the

use of Random Forests to form residuals in this section.

After partialling out controls using Random Forests, we run the

regression of �̌� on �̌� to assess the strength of the instruments.

The resulting t-statistic is approximately 2, much lower than any

rule-of-thumb "safety" threshold that appears in the literature.

As such, we conclude that we have a weak instrument and

proceed with weak identification robust inference.

Figure 13.3: Construction of weak

IV robust confidence regions for the

effect of institutions on output us-

ing DML. Values of the 𝐶(𝜃) statis-

tic are shown on the vertical axis;

values of 𝜃 tested on the horizontal

axis. The 90% confidence region is

given by the red vertical bars.

We implement the robust inferential approach from the previous

subsection considering Θ = [−2, 2] as our parameter space for

the causal effect of institutions on wealth. We note that, because

the outcome we consider is the logarithm of GDP per capita,

the range [-2,2] includes extremely (likely implausibly) large
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negative and positive effects, so restricting attention to this

range a priori seems reasonable. We illustrate the procedure in

Figure 13.3 which plots the value of the test statistic 𝐶(𝜃) for

𝜃 ∈ [−2, 2].

The resulting 95% confidence region is

[.28, 2].

We can compare this region to the confidence region produced

by the usual Gaussian asymptotic approximation which is not

robust to weak identification:

[.86 ± 2 · 0.33] = [.20, 1.52].

Both the usual and robust confidence regions are consistent

with relatively large positive effects of institutions on wealth.

However, it is interesting that the lower end of the robust

confidence region is larger than the lower end of the usual

region and that this difference is economically meaningful. That

is, we could not rule out that a one unit increase in quality of

institutions causes an approximately a 20% increase in GDP

per capita looking at the usual interval, while we could rule

out all effect sizes smaller than 28% with the robust interval.

The difference between a 20% and 28% increase in GDP per

capita is small but certainly economically relevant. Given that

the instruments are weak, we should, of course, rely on the

robust confidence interval.

13.4 Generic DML Inference under Weak

Identification

We now present a generally applicable formulation of weak

identification robust inference. This formulation covers the

problem of weak instruments in the context of LATE estimation

as well as other problems where Neyman orthogonal scores are

available.

The initialization and first two steps to our approach to weak

identification robust inference are the same as in the Generic

DML Algorithm. We then use these estimates of the nuisance

parameters in conjunction with the score function at a fixed

value of 𝜃 to construct a score test statistic analogous to 𝐶(𝜃)
from the previous section which can be used to test the hypoth-

esis that 𝜃0 = 𝜃 and to form confidence regions. We collect this

procedure in the following algorithm:
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Generic DML Robust to Weak Identification

1. Initialize: Provide the data frame (𝑊𝑖)𝑛𝑖=1
, the Ney-

man orthogonal score/moment function 𝜓(𝑊, 𝜃, 𝜂)
and the name and model for ML estimation method(s)

for learning nuisance parameters 𝜂. Specify Θ to be a

known parameter space that contains the true value

𝜃0. We then take a K-fold random partition (I𝑘)𝐾𝑘=1

of observation indices {1, ..., 𝑛} such that the size of

each fold is about the same. For each 𝑘 ∈ {1, . . . , 𝐾},
we construct a machine learning estimator �̂�[𝑘] using

data (𝑊𝑖)𝑖∉I𝑘 , that is, all the data except the data from

the 𝑘th
fold.

2. Estimate Moments and Their Variance: Letting

𝑘(𝑖) = {𝑘 : 𝑖 ∈ 𝐼𝑘}, construct the moment function

M̌(𝜃) = 1

𝑛

𝑛∑
𝑖=1

𝜓(𝑊𝑖 ;𝜃, �̂�[𝑘(𝑖)])

covariance function,

Ω̌(𝜃) = 1

𝑛

𝑛∑
𝑖=1

[𝜓(𝑊𝑖 ;𝜃, �̂�[𝑘(𝑖)])𝜓(𝑊𝑖 ;𝜃, �̂�[𝑘(𝑖)])′]

− 1

𝑛

𝑛∑
𝑖=1

[�̂�(𝑊𝑖 ;𝜃, �̂�[𝑘(𝑖)])]
1

𝑛

𝑛∑
𝑖=1

[𝜓(𝑊𝑖 ;𝜃, �̂�[𝑘(𝑖)])]′,

and score statistic

𝐶(𝜃) = 𝑛M̌(𝜃)′Ω̌−1(𝜃)M̌(𝜃).

3. Confidence Region: Construct the approximate (1 −
a) × 100% confidence region as

𝐶𝑅(𝜃0) = {𝜃 ∈ Θ : 𝐶(𝜃) ≤ 𝑐(1 − a)}

where 𝑐(1 − a) is the (1 − a)−quantile of a 𝜒2(𝑚)
variable where 𝑚 = dim(M̌(𝜃)).

Note that this confidence region simply collects all values 𝜃 ∈ Θ
that are not rejected by testing 𝜃0 = 𝜃 using test statistic 𝐶(𝜃)
at the a-level.

As in the previous section, we define oracle versions of the

moment and covariance functions from the preceding algorithm
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for use in stating formal results:

M̂(𝜃) = 𝔼𝑛[𝜓(𝑊 ;𝜃, 𝜂0)],

Ω̂(𝜃) = 𝕍𝑛[𝜓(𝑊 ;𝜃, 𝜂0)].

Theorem 13.4.1 Under regularity conditions, estimation of nui-
sance parameters does not affect the behavior of the 𝐶(𝜃) statistic
in the sense that

𝐶(𝜃0) ≈ 𝑛M̂(𝜃0)Ω̂−1(𝜃0)M̂(𝜃0) 𝑎∼ 𝜒2(𝑚).

Consequently, a test that rejects when 𝐶(𝜃) ≥ 𝑐(1−a), for 𝑐(1−a)
the (1− a)−quantile of a 𝜒2(𝑚) variable, rejects the true value with
approximate probability a:

P(𝐶(𝜃0) ≥ 𝑐(1 − a)) ≈ a.

Similarly, the confidence region corresponding to this test, 𝐶𝑅(𝜃0),
contains 𝜃0 with approximate probability (1 − a):

P(𝜃0 ∈ 𝐶𝑅(𝜃0)) ≈ (1 − a).

13.5 Notebooks

Notebook 13.5.1 (Weak IV) R Notebook on Weak IV and

Python Notebook on Weak IV provide a simulation exper-

iment illustrating the weak instrument problem with IV

estimators.

Notebook 13.5.2 (DML for Partially Linear IV) DML for

Partially Linear IV R Notebook and DML for Partially Linear

IV Python Notebook carry out the DML IV analysis of the

Acemoglu-Johnson-Robinson example, which considers the

impact of the quality of institutions on economic growth,

instrumenting quality of institutions with settler mortality.

The notebook explores the partially linear IV model and tests

for the presence of weak instruments.

Notebook 13.5.3 (DML for LATE Models) DML for LATE

Models R Notebook and DML for LATE Models Python

Notebook estimate the Local Average Treatment Effects of

401(K) participation on net financial wealth.

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/r-weak-iv-experiments.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/python-weak-iv-experiments.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/r-debiased-ml-for-partially-linear-iv-model.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/r-debiased-ml-for-partially-linear-iv-model.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/python-debiased-ml-for-partially-linear-iv-model.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/python-debiased-ml-for-partially-linear-iv-model.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/r-dml-401k-IV.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/r-dml-401k-IV.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/python-dml-401k-IV.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC2/python-dml-401k-IV.ipynb
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13.6 Exercises

Exercise 13.6.1 (Weak IV) Experiment with Notebook 13.5.1,

varying the strength of the instrument. How strong should the

instrument be in order for the conventional normal approx-

imation based on strong identification to provide accurate

inference? Based on your experiments, provide a brief expla-

nation of the weak IV problem to a friend.

Exercise 13.6.2 (DML for Partially Linear IV) Experiment

with Notebook 13.5.2. Try to extend the analysis by includ-

ing other control variables (e.g. religion, other measures of

geography, or measures of natural resources) or consider

another empirical application to another IV example. (See

some potential applications at the the Angrist data archive).

In the case of a new application, don’t forget to draw your

DAGs!

Exercise 13.6.3 (DML for LATE Models) Experiment with

the Notebook 13.5.3. Apply the analysis to another dataset.

For example, try the JTPA data from Joshua Angrist’s data

archive. Don’t forget to draw your DAGs!

Exercise 13.6.4 ((Theoretical) Neyman Orthogonality of the

Partially Linear IV Methods) Verify that the scores for the

partially linear IV methods are Neyman orthogonal.

https://economics.mit.edu/faculty/angrist/data1/data/abangim02
https://economics.mit.edu/faculty/angrist/data1/data/abangim02
https://economics.mit.edu/faculty/angrist/data1/data/abangim02
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