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"Without Philip Wright

would there have been causal DAGs?

Who can really say?"

– Kei Hirano
∗

https://keihirano.github.io/haiku.html

In this chapter, we discuss various models with unobserved

confounders where the adjustment strategies based on con-

ditioning that we have discussed no longer work. We start

with sensitivity analysis of causal inference to the presence

of unobserved confounders. Then we discuss identification of

causal effects when instrumental variables or proxy controls

are available.

∗
Sewall Wright, son, and Philip Wright, father, were responsible for some

of the greatest ideas in causal inference. Sewall Wright invented causal

path diagrams (linear DAGs), and Philip Wright wrote down DAGs for

supply-demand equations, proposed IV methods for their identification,

and even proposed weather conditions as instruments. Just one of these

contributions would probably have been enough to get a QJE publication

in the 1970s and later, but it was not good enough in 1926 or so. Philip

Wright is a (causal) parent of Sewall Wright, so he is one of the causes of

DAGs (hence the haiku).

https://keihirano.github.io/haiku.html
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𝐷 𝑌

Figure 12.1: 𝐷 causes 𝑌

𝐴

𝐷 𝑌

Figure 12.2: 𝐷 and 𝑌 are caused by

a latent factor 𝐴

𝑍 𝐷 𝑌

𝐴

Figure 12.3: A DAG with Latent

Confounder 𝐴 and Instrument 𝑍.

12.1 The Difficulty of Causal Inference

with an Unobserved Confounder

"All happy statisticians are happy in their own way;

but all the unhappy ones are all alike — they all

do causal inference with observational data”. L.

Tolstoy in Anna Karenina (Source: Twitter)

Here we consider models with unobserved confounding vari-

ables. The presence of unobserved confounding variables com-

plicates identification of causal effects. Without further assump-

tions, it is impossible to identify causal effects in a setting with

unobserved confounding variables.

For example, consider the following two basic models shown

in Figures 12.1 and 12.2, where we can think of 𝑌 as wages, 𝐷

as education, and 𝐴 as latent ability.

In the first model, 𝐷 has a causal effect on 𝑌; and in the second,

it does not. However, the two models in Figures 12.1 and 12.2

are statistically indistinguishable from each other if 𝐴 is not

observed. Even with strong restrictions, as in Gaussian linear

SEMs, the observed correlation between 𝐷 and 𝑌 can always

be rationalized either as a causal effect of 𝐷 on 𝑌 or the result

of a common cause 𝐴.

The observation that Figures 12.1 and 12.2 are statistically indis-

tinguishable applies more generally. While we cannot precisely

pin down causal effects in such cases, we can still learn about

causal effects by performing sensitivity analysis if we are willing

to assume a bound on the strength of unobserved confounders.

We discuss a practical and intuitive approach to sensitivity

analysis in Section 12.2.

We may also make progress in learning causal effects in the

presence of unobserved confounders by considering the use of

instrumental variables (IVs) – additional random vectors 𝑍 that

create exogenous variation in 𝐷 – as illustrated in Figure 12.3.

This approach was introduced by Philip Wright in 1928 [1]. The

use of instruments renders many linear ASEMs identifiable,

allowing us to perform inference on structural effects 𝐷 →
𝑌. Some nonlinear ASEMs also become identifiable, though

identification still fails for completely unrestricted nonlinear

models. We discuss the use of instruments in Sections 12.3-

12.4.

A related set of problems is when we observe multiple proxy

measurements of the latent confounder 𝐴. For example, we may

observe 𝑆, the SAT score, and 𝑄, the ACT score, which may

https://twitter.com/VC31415/status/1348354738501378048
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𝐷 𝑌

𝐴 𝑆𝑄

Figure 12.4: A DAG with two prox-

ies for latent confounders.

𝐷 𝑌

𝑋 𝐴

Figure 12.5: 𝑋 are observed con-

founders, and 𝐴 are unobserved

confounders.

both be proxies for latent confounder, 𝐴, ability as illustrated

in Figure 12.4. Note that conditioning on 𝑄 and 𝑆 does not

block the backdoor path 𝑌 ← 𝐴 → 𝐷. Hence we cannot

use the regression adjustment method for identification of

𝐷 → 𝑌. However, this problem is related to IVs, because we can

effectively use one measurement in place of 𝐴 and instrument it

with another measurement to deal with the measurement error.

This process can provide identification of the main effect𝐷 → 𝑌.

In other words, we can use instrumental variable regression of𝑌

on 𝐷 and 𝑆, using 𝐷 and 𝑄 as technical instrumental variables.

This approach was introduced by Zvi Griliches in 1977 [2]. This

model has also been extensively studied for nonlinear models as

well, e.g., Miao et al. [3] and Deaner [4], especially in the recent

literature. We discuss proxy approaches in Section 12.6.

12.2 Impact of Confounders on Causal

Effect Identification and Sensitivity

Analysis

Example 12.2.1 (Partially Linear SEM) Consider the SEM

(illustrated in Figure 12.5)

𝑌 := 𝛼𝐷 + 𝛿𝐴 + 𝑓𝑌(𝑋) + 𝜖𝑌 ,

𝐷 := 𝛾𝐴 + 𝑓𝐷(𝑋) + 𝜖𝐷 ,

𝐴 := 𝑓𝐴(𝑋) + 𝜖𝐴 ,

𝑋 := 𝜖𝑋 ,

where, conditional on 𝑋 , 𝜖𝑌 , 𝜖𝐷 , 𝜖𝐴 are mean zero and mutu-

ally uncorrelated. We further normalize

E[𝜖2

𝐴] = 1.

The key structural parameter is 𝛼:

𝛼 = 𝜕𝑑𝑌(𝑑)

where

𝑌(𝑑) := (𝑌 : 𝑑𝑜(𝐷 = 𝑑)).

To give context to our example, we can interpret𝑌 as earnings,𝐷

as education,𝐴 as ability, and𝑋 as a set of observed background

variables. In this example, we can interpret 𝛼 as the returns to

schooling.

We start by applying the partialling out operator to get rid of the
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1: [6] provides an equivalent result

for PLM and a general form of such

result for fully nonlinear models.

𝑋’s in all of the equations. Define the partialling out operation

of any random vector 𝑉 with respect to another random vector

𝑋 as the residual that is left after subtracting the best predictor

of 𝑉 given 𝑋:

𝑉̃ = 𝑉 − E[𝑉 | 𝑋].

If 𝑓 ’s are linear, we can replace E[𝑉 | 𝑋] by linear projection.

After partialling out, we have a simplified system:

𝑌̃ := 𝛼𝐷̃ + 𝛿𝐴̃ + 𝜖𝑌 ,

𝐷̃ := 𝛾𝐴̃ + 𝜖𝐷 ,

𝐴̃ := 𝜖𝐴 ,

where 𝜖𝑌 , 𝜖𝐷 , and 𝜖𝐴 are uncorrelated.

Then the projection of 𝑌̃ on 𝐷̃ recovers

𝛽 = E[𝑌̃𝐷̃]/E[𝐷̃2] = 𝛼 + 𝜙,

where

𝜙 = 𝛿𝛾/E
[
(𝛾2 + 𝜖2

𝐷)
]

is the omitted confounder bias. Omitted confounder bias is also of-

ten referred to as omitted variables

bias.

The formula follows from inserting the expression for 𝐷̃ into

the definition of 𝛽 and then simplifying the resulting expression

using the assumptions on the 𝜖’s.

We can use this formula to bound 𝜙 directly by making assump-

tions on the size of 𝛿 and 𝛾. An alternative approach can be

based on the following characterization, based on partial 𝑅2
’s.

This characterization generalized the analogous result from

Cinelli and Hazlett [5], with the slight difference that we have

adapted the result to the partially linear model.
1

Theorem 12.2.1 (Omitted Confounder Bias in PLM in Terms

of Partial 𝑅2
’s) In the setting given in Example 12.2.1,

𝜙2 =

𝑅2

𝑌̃∼𝐴̃|𝐷̃𝑅
2

𝐷̃∼𝐴̃

(1 − 𝑅2

𝐷̃∼𝐴̃)
E

[
(𝑌̃ − 𝛽𝐷̃)2

]
E

[
(𝐷̃)2

] ,

where 𝑅2

𝑉∼𝑊 |𝑋 denotes the population 𝑅2 in the linear regression
of 𝑉 on𝑊 , after partialling out 𝑋 from 𝑉 and𝑊 linearly.

Therefore, if we place bounds on how much of the variation in

𝑌̃ and in 𝐷̃ the unobserved confounder 𝐴̃ is able to explain, we
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can bound the omitted confounder bias by√
𝜙2.

Example 12.2.2 The Notebooks 12.7.1 analyse the

sensitivity of the DML estimate in

the Darfur wars.

Here, we consider the empirical example

from Cinelli and Hazlett [5], which is based on the original

analysis from Hazlett [7]. In this example, we are interested

in estimating the effect of having experienced direct war

violence (violence) on attitudes towards peace (peace). To

obtain our estimates, we use data from a survey on attitudes

of Darfurian refugees in eastern Chad. For further details

regarding the data and historical context, see the original

paper [7].

As we suspect that experiencing direct war violence is not

as good as randomly assigned, we control for observed de-

mographics to hopefully captured sources of confounding.

The 𝑅2
of the regression of peace on the controls after par-

tialling out violence is 0.13, and the 𝑅2
of the regression of

violence on the controls is 0.01. Benchmarking the association of

unobserved confounders to that of

observed confounders can be ar-

gued for on the basis that the orig-

inal controls were chosen in an ef-

fort to find good variables to cap-

ture confounding, so any remain-

ing source of confounding is likely

less predictive of the outcome and

variable of interest than the ob-

served controls. While a nice story,

one should be cautious of such ar-

guments as controls are often based

on convenience and what is read-

ily available and measurable rather

than careful consideration. Here,

we adopt this story as a benchmark

for illustrative purposes.

Based on these observed

values, suppose we are willing to accept that

𝑅2

𝑌̃∼𝐴̃|𝐷̃ ≤ 0.13, 𝑅2

𝐷̃∼𝐴̃ ≤ 0.01.

That is, we are willing to assume that any latent confounder

is no stronger than the observed controls for predicting𝑌 and

for predicting 𝐷.

We can now apply Theorem 12.2.1 to obtain a point estimate

of the bias using these benchmark values for 𝑅2

𝑌̃∼𝐴̃|𝐷̃ and

𝑅2

𝐷̃∼𝐴̃. Filling these values in, we obtain a point estimate of

the bias as

𝜙̂ =

√
0.13 ∗ 0.01

0.99

0.0597

0.1402

≈ 0.0236

where we estimate E

[
(𝑌̃ − 𝛽𝐷̃)2

]
≈ 0.0597 using the sam-

ple average of the squared residuals from the regression

of the residuals from partialling the controls out from 𝑌

onto the residuals from partialling out the controls from 𝐷

and E

[
(𝐷̃)2

]
≈ 0.1402 as the sample average of the squared

residuals from partialling out the controls from 𝐷. Finally,

the point estimate of 𝛽 from the data is 0.1003, so we can

obtain point estimates of the upper and lower bounds on 𝛼
as 𝛽̂ ± 𝑝̂ℎ𝑖 = 0.1003 ± 0.0236. That is, our point estimate for



12 Unobserved Confounders, Instrumental Variables, and Proxy
Controls 322

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Combination of R2 such that |Bias| <  0.0236

Partial R2 of Treatment with Confounder

P
ar

tia
l R

2  o
f O

ut
co

m
e 

w
ith

 C
on

fo
un

de
r

Figure 12.6: Sensitivity contour

plot: The graph shows values

of 𝑅2

𝑌̃∼𝐴̃|𝐷̃ and 𝑅2

𝐷̃∼𝐴̃ that give

a given value of the bias |𝜙̂ | =
0.0236. in the Darfur example.

The value 0.0236 was chosen

as this corresponds to the es-

timated bias in our benchmark

scenario for 𝑅2

𝑌̃∼𝐴̃|𝐷̃ and 𝑅2

𝐷̃∼𝐴̃.

All points below the plotted con-

tour would correspond to esti-

mated bias smaller than 0.0236.

the lower bound for the causal effect of violence on peace

under our stated beliefs about unobserved confounding is

0.0767.

We show all combinations of 𝑅2

𝑌̃∼𝐴̃|𝐷̃ and 𝑅2

𝐷̃∼𝐴̃ that would

lead to estimated bias of 0.0236 in Figure 12.6 and note that

all combinations below the curve would lead to smaller bias

estimates. We see, for example, that we need to believe there

is almost no relationship between unobserved confounding

variables and the outcome (after partialling out other vari-

ables) to keep the bias smaller than 0.0236 if we believe that

𝑅2

𝐷̃∼𝐴̃ could be 0.05 or greater.

Finally, we note that we have focused on point estimation here

under benchmark beliefs but that one might be interested

in other quantities. For example, one might wish to under-

stand how large 𝑅2

𝑌̃∼𝐴̃|𝐷̃ and 𝑅2

𝐷̃∼𝐴̃ can be before drawing

qualitatively different conclusions from the point estimates.

For example, one might wish to understand when the lower

bound in the Darfur example becomes 0. Alternatively, one

might wish to understand sensitivity of inferential statements

rather than point estimates. Such extensions are readily ac-

commodated; see, e.g. [5].
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𝑍 𝐷 𝑌

𝑋 𝐴

Figure 12.7: An IV model with

observed and unobserved con-

founders.

12.3 Partially Linear IV Models

When instrumental variables are available, it becomes possible

to point identify causal effects in partially linear models and

certain types of causal effects in nonlinear models. Here we

begin with partially linear models.

A Wage Equation with Unobserved Ability

Example 12.3.1 (Returns to Education with Omitted Ability;

Generalization of Griliches, 1977 [2]) Consider the ASEM

𝑌 := 𝛼𝐷 + 𝛿𝐴 + 𝑓𝑌(𝑋) + 𝜖𝑌 ,

𝐷 := 𝛽𝑍 + 𝛾𝐴 + 𝑓𝐷(𝑋) + 𝜖𝐷 ,

𝑍 := 𝑓𝑍(𝑋) + 𝜖𝑍 ,

𝐴 := 𝑓𝐴(𝑋) + 𝜖𝐴 ,

𝑋 := 𝜖𝑋 ,

where, conditional on 𝑋, 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍 , 𝜖𝐴 have mean zero and

are mutually uncorrelated.

We can interpret𝑌 as earnings,𝐷 as education, 𝐴 as ability, 𝑍

as an observed shifter of education, and𝑋 as a set of observed

background variables. The key structural parameter is 𝛼, the

returns to schooling, i.e.

𝛼 = 𝜕𝑑𝑌(𝑑),

where

𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).

Examples of instruments for schooling, 𝑍, that have appeared

in the literature include

▶ distance to college (Card [8]),

▶ compulsory schooling laws (Angrist [9]),

▶ offer to participate/offer to treat in a training program

(Bloom et al. [10]), and

▶ local earnings and unemployment at age 17 (Cameron

and Heckman [11]).

We apply the partialling-out operator to get rid of the 𝑋’s in

all of the equations. As before, we define the partialling out

operation of any random vector 𝑉 with respect to another
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𝑍̃ 𝐷̃ 𝑌̃

𝐴̃

Figure 12.8: DAG corresponding

to Figure 12.7 after partialling out

observed confounder 𝑋.

random vector 𝑋 as the residual that is left after subtracting the

best predictor of 𝑉 given 𝑋:

𝑉̃ = 𝑉 − E[𝑉 | 𝑋].

If 𝑓 ’s are linear, we replace E[𝑉 | 𝑋]with linear projection.

After partialling-out, we have a simplified system.

𝑌̃ := 𝛼𝐷̃ + 𝛿𝐴̃ + 𝜖𝑌 ,

𝐷̃ := 𝛽𝑍̃ + 𝛾𝐴̃ + 𝜖𝐷 ,

𝑍̃ := 𝜖𝑍 ,

𝐴̃ := 𝜖𝐴 ,

where 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍, and 𝜖𝐴 are uncorrelated.

We immediately obtain the following result:

Theorem 12.3.1 In Example 12.3.1, we can rewrite an econometric
measurement model for identification of 𝛼:

𝑌̃ := 𝛼𝐷̃ +𝑈, 𝑈 ⊥ 𝑍̃,

where𝑈 = 𝛿𝐴̃ + 𝜖𝑌 . Alternatively, we can equivalently identify 𝛼
using the moment restriction

E

[
(𝑌̃ − 𝛼𝐷̃)𝑍̃

]
= 0.

The identification of 𝛼 follows from solving this equation,

𝛼 = E[𝑌̃𝑍̃]/E[𝐷̃𝑍̃],

provided the instruments are relevant: E[𝐷̃𝑍̃] ≠ 0 or 𝛽 ≠ 0.

Remark 12.3.1 (Neyman Orthgonality and DML) The target

parameter 𝛼 is Neyman orthogonal with respect to nuisance

parameters – the regression functions E[𝑌 | 𝑋], E[𝐷 | 𝑋],
and E[𝑍 | 𝑋]. Therefore we can use DML for learning and

performing statistical inference on the parameter 𝛼.

Wright’s Causal Path Derivation

Starting from the DAG given in Figure 12.7, we obtain Figure

12.8 after partialling out.
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𝑍̃ 𝐷̃ 𝑌̃

𝜖𝑑

Figure 12.9: A DAG for aggregate

demand, with the latent node 𝜖𝑑

representing the demand shock

Philip Wright (1928) [1] observed that the structural param-

eter 𝛽𝛼, the effect 𝑍̃→ 𝑌̃, is identified from the projection

of 𝑌̃ ∼ 𝑍̃:

𝛽𝛼 = E[𝑌̃𝑍̃]/E[𝑍̃2].

The structural parameter 𝛽, the effect of𝑍→ 𝐷, is identified

from the projection of 𝐷̃ ∼ 𝑍̃:

𝛽 = E[𝐷̃𝑍̃]/E[𝑍̃2].

𝛼, the effect of 𝐷 → 𝑌, is then identified by the ratio of the

two provided 𝛽 ≠ 0:

𝛼 =
𝛽𝛼

𝛽
= E[𝑌̃𝑍̃]/E[𝐷̃𝑍̃].

We provide a thorough discussion of using DML to estimate

parameters within the instrumental variables framework along

with example applications in Chapter 13.

Aggregate Market Demand

Let’s apply our approach to a canonical example in economics:

the identification of the price elasticity of demand using a

supply shifter as an instrument.

Example 12.3.2 (Market Demand; Generalization of P. Wright,

1928 [1]) Consider the ASEM

𝑌 := 𝛼𝐷 + 𝑓𝑌(𝑋) + 𝜖𝑑 ,

𝐷 := 𝛽𝑍 + 𝑓𝐷(𝑋) + 𝜌𝜖𝑑 + 𝛾𝜖𝑠 ,

𝑍 := 𝑓𝑍(𝑋) + 𝜖𝑍

where 𝜖𝑑, 𝜖𝑠 and 𝜖𝑍 are mean zero and uncorrelated condi-

tional on 𝑋. In this example, 𝑌 is (log) demand, 𝐷 is (log)

price,𝑍 is an observed supply shifter,𝑋 is a vector of observed

demand shifters, 𝜖𝑑 is a demand shock, and 𝜖𝑠 is a supply

shock. The key parameter is 𝛼, the price elasticity of demand:

𝛼 = 𝜕𝑑𝑌(𝑑),

where 𝑌(𝑑) := (𝑌 : 𝑑𝑜(𝐷 = 𝑑)). Here we focus on only the

demand side of the market and do not attempt to explicitly

model the supply side. In econometrics, the set-up here is

sometimes referred to as a limited
information model or formulation

because we are focusing on iden-

tifying only a single equation in a

more complicated underlying sys-

tem.
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Example 12.3.2 is equivalent to the previous Example 12.3.1

– set 𝐴 = 𝜖𝑑, 𝜖𝑌 = 0, 𝜖𝑠 = 𝜖𝐷 , and so on. Hence, the

identification method is the same as before.

Limits of Average Causal Effect Identification

under Partial Linearity

The result in Theorem 12.3.1 extends beyond the partially linear

setting presented in Example 12.3.1 to the following non-linear

structural equation model:

Example 12.3.3 (Partially Linear Outcome IV Model) Con-

sider the ASEM

𝑌 := 𝑔𝑌(𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌),
𝐷 := 𝑓𝐷(𝑍, 𝑋, 𝐴, 𝜖𝐷),
𝑍 := 𝑓𝑍(𝑋, 𝜖𝑍),
𝐴 := 𝑓𝐴(𝑋, 𝜖𝐴),
𝑋 := 𝜖𝑋 ,

where 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍 , 𝜖𝐴 are exogenous and mutually indepen-

dent. The key structural parameter is:

𝛼 := E[𝜕𝑑𝑌(𝑑)] = E[𝑔𝑌(𝜖𝑌)],

where

𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).

This parameter is typically referred to as the average marginal

effect of the treatment.

Theorem 12.3.1 extends almost as is to this more general non-

linear structural equation model.

Theorem 12.3.2 In Example 12.3.3, we can identify 𝛼 using the
moment restriction

E

[
(𝑌̃ − 𝛼𝐷̃)𝑍̃

]
= 0.

The identification of 𝛼 follows from solving this equation,

𝛼 = E

[
𝑌̃𝑍̃

]
/E

[
𝐷̃𝑍̃

]
,

provided the instruments are relevant: E[𝐷̃𝑍̃] ≠ 0.



12 Unobserved Confounders, Instrumental Variables, and Proxy
Controls 327

Note that the non-linear structural equation model in Exam-

ple 12.3.3 imposes extra assumptions on the structural response

function of the outcome 𝑌. Thus our identification argument

imposes more conditions on the structural equations than the

ones that can be encoded via a DAG. Such auxiliary assumptions

are required for identification of average treatment effects with

instruments.

In particular, the identification argument relies on the fact that

the unobserved confounder 𝐴 enters in an additively separable

manner in the outcome equation. If for instance, 𝐴was an input

to the function 𝑔, i.e. 𝑌 := 𝑔𝑌(𝐴, 𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌), then the

quantity identified by the moment restriction in Theorem 12.3.2

would not correspond to an average treatment effect. In this case,

the unobserved confounder creates heterogeneity in the treat-

ment effect and also heterogeneity in the effect of the instrument

on the treatment, typically referred to as the "compliance" (i.e.,

the correlation between 𝑍 and 𝐷 varies with 𝐴). This property

is what renders the ratio quantity 𝛼 = E

[
𝑌̃𝑍̃

]
/E

[
𝐷̃𝑍̃

]
invalid

for the causal estimand of interest.

In fact, it is the joint heterogeneity in both the outcome relation-

ship and the compliance relationship that causes the problem.

We show next that we could allow for a much more complex

outcome model as long as the effect of the instrument on the

treatment (compliance) is not heterogeneous in 𝐴 or 𝑋.

Example 12.3.4 (Partially Linear Compliance IV Model) Con-

sider the ASEM

𝑌 := 𝑔𝑌(𝐴, 𝑋, 𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌),
𝐷 := 𝑔𝐷(𝜖𝐷)𝑍 + 𝑓𝐷(𝑋, 𝐴, 𝜖𝐷),
𝑍 := 𝑓𝑍(𝑋) + 𝜖𝑍 ,

𝐴 := 𝑓𝐴(𝑋, 𝜖𝐴),
𝑋 := 𝜖𝑋 ,

where, 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑍 , 𝜖𝐴 are exogenous and mutually indepen-

dent. The key structural parameter is:

𝛼 := E[𝜕𝑑𝑌(𝑑)] = E[𝑔(𝐴, 𝑋, 𝜖𝑌)],

where

𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).

Theorem 12.3.3 In Example 12.3.4, we can identify 𝛼 using the
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moment restriction

E

[
(𝑌̃ − 𝛼𝐷̃)𝑍̃

]
= 0.

The identification of 𝛼 follows from solving this equation,

𝛼 = E

[
𝑌̃𝑍̃

]
/E

[
𝐷̃𝑍̃

]
,

provided the instruments are relevant: E[𝐷̃𝑍̃] ≠ 0.

Thus, we see that we need that either the effect of education on

wages is not heterogeneous in the unobserved ability variable

𝐴 or that the effect of the observed education shifter 𝑍 (e.g.

distance to college) on education 𝐷 is not heterogeneous in the

unobserved ability variable to use the identification strategies

presented in this section in the context of our education exam-

ple. In Section 12.4, we will investigate what causal quantities

are identifiable even in non-linear structural equation models,

where the unobserved confounder creates heterogeneity in both

the treatment effect and in the compliance behavior.

Remark 12.3.2 (Effect heterogeneity based on observables)

We note that allowing for 𝑋 to enter the 𝑔𝑌 or 𝑔𝐷 function

in Example 12.3.3 and Example 12.3.4 (i.e. allowing for the

treatment effect or compliance – the effect of the instrument

on treatment – to vary with 𝑋) is a more benign extension

because 𝑋 is an observed variable. In this case, we can repeat

the identification strategies in this section, conditional on 𝑋,

and we can show with similar arguments that

𝛽(𝑋) := E[𝜕𝑑𝑌(𝑑) | 𝑋] =
E[𝑌̃𝑍̃ | 𝑋]
E[𝐷̃𝑍̃ | 𝑋]

. (12.3.1)

We can simply average these conditional effects to get the

average marginal effect:

𝛼 = E[𝛽(𝑋)]. (12.3.2)

Such an identification strategy was initiated in [12, 13] and was

also recently used in the context of DML estimators [14–16].

In particular, the following moment condition that identifies

𝛼,

E

[
𝛽(𝑋) + (𝑌̃ − 𝛽(𝑋)𝐷̃)𝑍̃

E[𝐷̃𝑍̃ | 𝑋]
− 𝛼

]
= 0, (12.3.3)

is Neyman orthogonal with respect to the nuisance functions

𝛽(𝑋) and 𝛾(𝑋) := E[𝐷̃𝑍̃ | 𝑋]. We note that this identification
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𝑍 𝐷 𝑌

𝑋 𝐴

Figure 12.10: LATE models. Green

arrow denotes a monotone func-

tional relation.

strategy remains valid even if in Example 12.3.4 the instrument

equation is fully non-linear, i.e. 𝑍 := 𝑓𝑍(𝑋, 𝜖𝑍).

12.4 Nonlinear IV Models

Once we consider nonlinear models, identification becomes a

much more delicate matter. We first consider the local average

treatment effect (LATE) model, and then we turn to quantile

models.

The LATE Model

An important nonlinear IV model in the case of a binary treat-

ment variable and a binary instrumental variable is the local

average treatment effect model (LATE) proposed by Imbens

and Angrist [17].

Example 12.4.1 (LATE) Consider the SEM where

𝑌 := 𝑓𝑌(𝐷, 𝑋, 𝐴, 𝜖𝑌)
𝐷 := 𝑓𝐷(𝑍, 𝑋, 𝐴, 𝜖𝐷) ∈ {0, 1},
𝑍 := 𝑓𝑍(𝑋, 𝜖𝑍) ∈ {0, 1},
𝑋 := 𝜖𝑋 , 𝐴 = 𝜖𝐴 ,

where the 𝜖’s are mutually independent, and

𝑧 ↦→ 𝑓𝐷(𝑧, 𝐴, 𝑋, 𝜖𝐷)

is weakly increasing (weakly monotone).

Suppose the instrument𝑍 is an offer to participate in a training

program and that 𝐷 is the actual endogenous participation

in the training program. Participation in the program may

depend on unobservables 𝐴, such as ability or perseverence,

that also affect the eventual outcome 𝑌. We can also have

background exogenous covariates 𝑋 in the model.

Define

𝑌(𝑑) := 𝑓𝑌(𝑑, 𝑋, 𝐴, 𝜖𝑌) and 𝐷(𝑧) := 𝑓𝐷(𝑧, 𝑋, 𝐴, 𝜖𝐷)

as the potential outcomes that result from applying fix-interventions

in the corresponding equations from Example 12.4.1.
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2: In the model with no 𝑋 the ratio

𝜃1/𝜃2 is equivalent to Wright’s [1]

IV estimand.

The model allows us to identify the local average treatment

effect (LATE), defined as

𝜃 = E[𝑌(1) − 𝑌(0) | 𝐷(1) > 𝐷(0)].

Here, {𝐷(1) > 𝐷(0)} is the compliance event which corresponds

to the case where exogenously switching the instrument value

from 𝑍 = 0 to 𝑍 = 1 induces a switch from the control state to

the treatment state. Therefore, the LATE measures the average

treatment effect conditional on compliance.

Theorem 12.4.1 In the LATE model, we have that 𝜃 is identified
by the ratio of two statistical parameters,

𝜃 = 𝜃1/𝜃2,

where

𝜃1 := E [E[𝑌 | 𝑋, 𝑍 = 1] − E[𝑌 | 𝑋, 𝑍 = 0]] ,

and

𝜃2 := E [E[𝐷 | 𝑋, 𝑍 = 1] − E[𝐷 | 𝑋, 𝑍 = 0]] ,

provided that the instrument 𝑍 is relevant, 𝜃2 > 0, and 𝑍 has full
conditional support – namely 0 < 𝑃(𝑍 = 1 | 𝑋) < 1. Moreover,
𝜃2 identifies the probability of compliance:

𝜃2 = P[𝐷(1) > 𝐷(0)].

The result has an intuitive interpretation.
2

In the event of

compliance, the instrument moves the treatment as if experi-

mentally, which induces quasi-experimental variation in the

outcome. We measure the probability of compliance with 𝜃2

and the average induced changes in outcome by 𝜃1. Taking the

ratio is then like conditioning on the compliance event. See the

proof in Section 12.A for details.

The ratio can be recognized as the ratio of average treatment

effects of 𝑍 on 𝑌 and 𝐷,

𝜃1 = 𝐴𝑇𝐸(𝑍→ 𝑌),

𝜃2 = 𝐴𝑇𝐸(𝑍→ 𝐷).

This assertion follows from the application of the backdoor cri-

terion. Therefore, we can simply re-use the tools for performing

inference on the two ATEs to perform inference on the LATE.
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𝑍 𝐷 𝑌

𝑋 𝜖𝑌

Figure 12.11: IV Quantile Model.

The green arrow represents a

strictly monotonic effect.

Remark 12.4.1 (DML for 𝜃1/𝜃2) We can apply DML to ob-

tain 𝜃̂1 and 𝜃̂2 and then construct the estimator 𝜃̂ = 𝜃̂1/𝜃̂2

via the plug-in principle. This approach has the Neyman

orthogonality property.

The IV Quantile Model
★

Another nonlinear IV model is the following model that ex-

ploits monotonicity in the unobservable shock in the outcome

equation to obtain identification.

Example 12.4.2 (IV Quantile Model) Consider the SEM

𝑌 = 𝑓𝑌(𝐷, 𝑋, 𝜖𝑌),
𝐷 = 𝑓𝐷(𝑍, 𝑋, 𝜖𝑌 , 𝜖𝐷),
𝑍 = 𝑓𝑍(𝑋, 𝜖𝑍),
𝑋 = 𝜖𝑋 ,

where the 𝜖’s are mutually independent,

𝑓𝑌(𝐷, 𝑋, ·) : [0, 1] ↦→ ℝ is strictly increasing,

and 𝜖𝑌 is normalized to have uniform distribution on (0, 1).

As a concrete example, suppose we are interested in estimating

demand. In this setting,𝑌would denote quantity sold of some

product,𝐷would denote the product’s price, 𝜖𝑌 would denote

a demand shock, and 𝜖𝐷 a supply shock.𝑋 would then denote

a set of observed variables, such as product characteristics,

that potentially relate to both price and quantity sold, and

𝑍 would be a set of instrumental variables. The function

𝑓𝑌(𝑑, 𝑥, 𝑢) is then the 𝑢-th quantile of the structural function

of 𝑓𝑌(𝑑, 𝑥, 𝜖𝑌), which gives us the demand with price fixed

to 𝑑 and characteristics fixed to 𝑥. For example, 𝑓𝑌(𝑑, 𝑥, 1/2)
would denote the median quantity demanded at fixed price

𝑑 and characteristics 𝑥.

The testable implication of the IV Quantile Model is the follow-

ing.

Theorem 12.4.2 In the IV Quantile Model, the testable moment



12 Unobserved Confounders, Instrumental Variables, and Proxy
Controls 332

𝐷 𝑌

𝐴 𝑆𝑄

𝑋

Figure 12.12: A DAG with Controls

and Proxy Controls

restriction is

P[𝑌 ≤ 𝑓𝑌(𝐷, 𝑋, 𝑢) | 𝑍, 𝑋] = 𝑢,

for each 𝑢 ∈ (0, 1). There exist regularity conditions, analogous to
instrument relevance, under which the structural function 𝑓𝑌 is
identified from this restriction.

In practice, linear forms 𝑓𝑌(𝐷, 𝑋, 𝑢) = 𝛼(𝑢)′𝐷 + 𝛽(𝑢)′𝑋 are

often used. Adopting a linear functional form leads to method

of moments approaches such as the IV quantile regression for

performing inference on structural quantile functions. Code for IV Quantile Models can

be found here.

Remark 12.4.2 (DML for IVQR Models) Neyman orthogonal

approaches for partially linear IVQR models are sketched out

in the review [18]. Exploring DML in more general settings

may be an interesting area for further work.

12.5 Partially Linear SEMs with

Griliches-Chamberlain Proxy

Controls

Suppose we are interested in the causal effect of college educa-

tion on earnings in the presence of an unobserved confounder –

individual ability. Here we show that we can recover the effect

of college education on earnings in the presence of latent ability

using proxies for ability, but not the effect of ability itself.

Example 12.5.1 (Earnings with Omitted Ability; Griliches,

1977 [2]; Griliches and Chamberlain, 1977 [19]) Consider the

ASEM

𝑌 := 𝛼𝐷 + 𝛿𝐴 + 𝜄𝑆 + 𝑓𝑌(𝑋) + 𝜖𝑌 ,

𝐷 := 𝛾𝐴 + 𝛽𝑄 + 𝑓𝐷(𝑋) + 𝜖𝐷 ,

𝑄 := 𝜂𝐴 + 𝑓𝑄(𝑋) + 𝜖𝑄 ,

𝑆 := 𝜙𝐴 + 𝑓𝑆(𝑋) + 𝜖𝑆 ,

𝐴 := 𝑓𝐴(𝑋) + 𝜖𝐴 ,

𝑋 := 𝜖𝑋 ,

where 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑄 , 𝜖𝑆 , 𝜖𝐴 , 𝜖𝑋 have mean zero and are uncor-

related conditional on 𝑋.

As an example, one might interpret𝑌 as earnings,𝐷 as college

https://www.victorchernozhukov.com/code-and-notebooks
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𝐷̃ 𝑌̃

𝐴̃ 𝑆̃𝑄̃

Figure 12.13: A DAG with Proxy

Controls After Partialling Out

3: Prove the result as a reading ex-

ercise. Substitute 𝐴̃ = (𝑆̃ − 𝜖𝑆)/𝜙
in the first equation and use the

assumptions on the disturbances.

degree, 𝐴 as ability, 𝑄 and 𝑆 as proxies of ability, and 𝑋 as

a set of observed background variables. Example proxies 𝑄

and 𝑆 are

▶ might be test scores or grades in some period 𝑡0 (𝑄)

and test scores or grades at a later period 𝑡1 (𝑆).

The key structural parameter is 𝛼, the returns to schooling;

i.e.

𝛼 = 𝜕𝑑𝑌(𝑑),

where 𝑌(𝑑) = 𝑌 : 𝑑𝑜(𝐷 = 𝑑).
After partialling out we are left with the DAG in Figure 12.13:

𝑌̃ := 𝛼𝐷̃ + 𝛿𝐴̃ + 𝜄𝑆̃ + 𝜖𝑌 ,

𝐷̃ := 𝛾𝐴̃ + 𝛽𝑄̃ + 𝜖𝐷 ,

𝑄̃ := 𝜂𝐴̃ + 𝜖𝑄 ,

𝑆̃ := 𝜙𝐴̃ + 𝜖𝑆 ,

𝐴̃ := 𝜖𝐴 ,

where 𝜖𝑌 , 𝜖𝐷 , 𝜖𝑄 , 𝜖𝑆 , 𝜖𝐴 are uncorrelated. The idea now is to

replace 𝐴̃ in the equation for 𝑌̃ with 𝑆̃. Note that because 𝑆

enters the 𝑌 equation directly, we cannot consider using 𝑄̃

to proxy for 𝐴̃. We still cannot learn 𝛼 from the regression of

𝑌̃ on 𝐷̃ and 𝑆̃ though as 𝑆 is an imperfect proxy for 𝐴. The

following result, which provides an IV approach to identify 𝛼,

is immediate via substitution.
3

Theorem 12.5.1 Assume that all variables in Example 12.5.1
are square-integrable. Then we have the following measurement
equation:

𝑌̃ = 𝛼𝐷̃ + 𝛿̄𝑆̃ +𝑈, E[𝑈(𝐷̃, 𝑄̃)] = 0,

𝑈 = −𝛿𝜖𝑆/𝜙 + 𝜖𝑌 ; 𝛿̄ = 𝜄 + 𝛿/𝜙.

Here 𝛼 is identified from the moment condition E[𝑈(𝐷̃, 𝑄̃)] = 0,
which is equivalent to using 𝑄̃ as an instrument for 𝑆̃, provided
that 𝐷̃ and the best linear predictor of 𝑆̃ using 𝑄̃ and 𝐷̃ have
non-degenerate covariance matrix.

Note that 𝑄̃ here plays the role of a technical instrument for

𝑆̃. This approach recovers 𝛼, but not 𝛿. For inference, we can

employ the DML method for IV models; see Chapter 13.

Remark 12.5.1 (Neyman Orthogonality and DML) The for-
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mulation of the target parameter given above is Neyman

orthogonal, and high-quality estimation and statistical in-

ference can be carried out using DML. In essence, we just

residualize the system, using cross-fitted residuals, and then

apply standard instrumental variable methods from econo-

metrics to perform inference on the structural parameter of

interest.

Example 12.5.2 The Notebooks 12.7.2 provide code

for the birth weight proxy controls

example using data downloaded

from Stat Labs.

Here, we consider a stylized empirical exam-

ple where we wish to estimate the causal effect of a mother’s

smoking on infant birth weight. We posit a partially linear

structural system exactly as in Example 12.5.1 where the

outcome of interest 𝑌 is infant birth weight in ounces, and

the treatment 𝐷 is a categorical representation of number of

cigarettes smoked per day. We abstract from issues related to

the categorical nature of 𝐷 and simply include it in its raw

form. In our stylized example, we pretend we do not observe

income and treat it as the unobserved confounder, 𝐴.

We then divide the other observed variables into

▶ proxy treatment control 𝑄: mother’s education

▶ proxy outcome control 𝑆: parity (total number of previ-

ous pregnancies)

▶ other observed covariates 𝑋: mother’s race and age.

We might believe that education serves as a proxy treatment

control 𝑄 because it reflects unobserved confounding due to

household income 𝐴 but has no direct medical effect on birth

weight. Parity may serve as a proxy outcome control because

family size may reflect household income 𝐴 but is plausibly

not directly caused by smoking 𝐷 or education 𝑄.

Assuming this structure, it is then easy to estimate the coeffi-

cient on 𝐷 within the partially linear structural model. We

obtain an estimate of -1.68 with standard error of 0.026. That

is, within the context of the posited model, The posited model is very stylized,

but illustrates the main ideas and

thought process.

there is substantial

evidence that smoking causally leads to lower infant birth

weights.

12.6 Nonlinear Models with Proxy

Controls
★

A relatively recent literature considers proximal causal inference,
which generalizes early work by Griliches and Chamberlain [19].

https://www.stat.berkeley.edu/users/statlabs/data/babies23.data
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𝐷 𝑌

𝐴 𝑆𝑄

Figure 12.14: A SEM with Proxy

Controls 𝑄 and 𝑆. Note that condi-

tioning on 𝑄 and 𝑆 does not block

the backdoor path 𝑌 ← 𝐴 → 𝐷,

hence we cannot use the regression

adjustment method for identifica-

tion of 𝐷 → 𝑌.

See, among others, [20], [21], [22], [23], [3]. Here we describe

some results specialized to the discrete case.

Example 12.6.1 (Miao, Geng, and Tchetgen Tchetgen [3]) We

consider the following model encoded in the DAG in Figure

12.14:

𝑌 := 𝑓𝑌(𝐷, 𝑆, 𝐴, 𝜖𝑌),
𝐷 := 𝑓𝐷(𝐴, 𝑄, 𝜖𝐷),
𝑄 := 𝑓𝑄(𝐴, 𝜖𝑄),
𝑆 := 𝑓𝑆(𝐴, 𝜖𝑆),
𝐴 := 𝜖𝐴 ,

where 𝜖’s are mutually independent. We can endow the same

context to this model as in Example 12.5.1.

Here we can introduce background exogenous controls 𝑋 in

each of the equations, but we don’t do so to save notation. Notice

that the model in Example 12.6.1 generalizes the Example 12.5.1

to the nonparametric case.

Assumption 12.6.1 In Example 12.6.1, assume

(a) Variables 𝑄, 𝑆 and 𝐴 are finitely discrete and take on the
same number of values.

(b) The matrix Π(𝑆 | 𝑄, 𝑑), whose 𝑠th row and 𝑞th column is
𝑝(𝑠 | 𝑞, 𝑑), is invertible for each value 𝑑.

Condition (b) is analogous to the usual relevance condition

in IV and basically says that the two proxies 𝑆 and 𝑄 have

sufficient joint variation at any value of 𝑑 to allow 𝑄 to serve

as an "instrument" for 𝑆. The discreteness assumption can be

generalized to a more general completeness condition; see, e.g.,

Miao et al. [3] and Deaner [4]. As with the usual IV relevance

condition, Condition (b) is testable from the data. In contrast,

the DAG itself and the other conditions involve an unobserved

variable𝐴 and are therefore generally untestable. The validity of

these untestable conditions must be assessed using contextual

knowledge about the empirical problem.

Theorem 12.6.1 Under Assumption 12.6.1, 𝑝(𝑦 : 𝑑𝑜(𝑑)) is identi-
fiable by the proximal formula:

𝑝(𝑦 : 𝑑𝑜(𝑑)) = Π(𝑦 | 𝑑, 𝑄)Π(𝑆 | 𝑄, 𝑑)−1 Π(𝑆) , (12.6.1)



12 Unobserved Confounders, Instrumental Variables, and Proxy
Controls 336

where Π(𝑦 | 𝑑, 𝑄) and Π(𝑆) are row and column vectors whose
entries are of the form 𝑝(𝑦 | 𝑑, 𝑞) and 𝑝(𝑠).

The mnemonic way to think about the formula above is that we

are doing a kind of instrumental variable regression of 𝑌 on 𝑆,

while instrumenting 𝑆 with 𝑄, which is exactly how we dealt

with the linear version of this problem in Section 12.6.

Remark 12.6.1 [23] and [22] provide moment functions de-

fined in terms of efficient influence functions, which possess

the Neyman orthogonality property, for estimating the av-

erage treatment effect within this proxy control setting in

the presence of a high-dimensional set of control variables.

These moment functions can thus serve as the foundation for

the use of DML inference methods for the average treatment

effect in such settings.

12.7 Notebooks

Notebook 12.7.1 (DML Sensitivity) DML Sensitivity R Note-

book analyses the sensitivity of the DML estimate in the

Darfur wars example to unobserved confounders using the

Sensemakr package in R. DML Sensitivity Python Notebook

does the same analysis in Python.

Notebook 12.7.2 (DML for Linear Proxy Controls) DML for

Linear Proxy Controls R Notebook and DML for Linear Proxy

Controls Python Notebook provide an application of using

linear instrumental variables estimation withing the proxy

controls framework to estimate the effect of smoking on birth

weight.

12.8 Exercises

Exercise 12.8.1 (Omitted Confounder Bias) Explain omitted

confounder bias to a fellow student (one paragraph). Explore

using sensitivity analysis to aid in understanding robust-

ness of economic conclusions to the presence of unobserved

confounders in an empirical example of your choice. The

Notebooks 12.7.1 can be a helpful starting point, but be sure to

apply the ideas to a different empirical example. (You could

use any of the previous examples we have analyzed).

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC1/r-sensitivity-analysis-with-sensmakr-and-debiased-ml.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC1/r-sensitivity-analysis-with-sensmakr-and-debiased-ml.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC1/python-sensitivity-analysis-with-sensmakr-and-debiased-ml.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC1/r-proxy-controls.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC1/r-proxy-controls.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC1/python-proxy-controls.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/AC1/python-proxy-controls.ipynb
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Exercise 12.8.2 (Instrumental Variables) Write a brief expla-

nation of the idea of the instrumental variables regression

model that would be appropriate for educating a fellow stu-

dent. Discuss the idea of identifying the causal effect in this

setting via path analysis in the spirit of what Philip Wright

did. Illustrate your discussion within a concrete empirical

setting.

Exercise 12.8.3 (Simulation IV or Proxy Controls) Create a

notebook to simulate one of the linear IV or proxy controls

models that we’ve described. Assume there are no 𝑋’s for

simplicity. Demonstrate numerically why using least squares

may not be appropriate due to unobserved confounding.

Demonstrate numerically how using instrumental variable

regression overcomes the issue.

Exercise 12.8.4 (LATE etc.) Write a verbal explanation of

one of the nonlinear models (e.g. LATE, IV quantile model,

or the nonlinear model with proxy controls) that would

be understandable by a fellow student. Be sure that the

explanation includes an intuitive discussion of how causal

parameters in these models are identified.
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12.A Proofs

Latent Confounder Bias Result: Theorem 12.2.1

The proof heavily relies on the Frisch-Waugh-Lovel partialling

out theorem (FWL) and the normalization on the variance of

the latent confounder:

E[𝐴̃2] = 1. (12.A.1)

The proof also relies on the properties of 𝑅2

𝑈∼𝑉 which measures

the proportion of variance of centered random variable𝑈 that

is linearly explained by another centered random variable 𝑉 :

𝑅2

𝑈∼𝑉 =
𝐸[𝛽2𝑉2]
E[𝑈2] = 1 − E[𝜖2]

E[𝑈2] =
(E[𝑈𝑉])2

E[𝑈2]E[𝑉2] = [Cor(𝑈,𝑉)]2,

where 𝛽 = E[𝑉𝑈]/E[𝑉2] is the coefficient of the best linear

projection of𝑈 onto 𝑉 , 𝜖 = 𝑈 − 𝛽𝑉 is the projection residual,

and Cor(𝑈,𝑉) denotes the correlation between𝑈 and 𝑉 . Note

that 𝑅2
is symmetric in𝑈 and 𝑉 : 𝑅2

𝑈∼𝑉 = 𝑅2

𝑉∼𝑈 .

By FWL and the normalization (12.A.1), we have

𝛾 = E[𝐴̃𝐷̃], 𝛿 = E[𝐴̄𝑌̄]/E[𝐴̄2],

where

𝑌̄ = 𝑌̃ − 𝛽𝐷̃; 𝛽 = E[𝑌̃𝐷̃]/E[𝐷̃2];

𝐴̄ = 𝐴̃ − 𝛽̃𝐷̃; 𝛽̃ = E[𝐴̃𝐷̃]/E[𝐷̃2].

It follows that

𝜙2 =
𝛾2𝛿2

(E[𝐷̃2])2
=
(E[𝐴̃𝐷̃])2

(E[𝐷̃2])2
(E[𝑌̄𝐴̄])2
(E[𝐴̄2])2

.

Then the result follows from the normalization (12.A.1);the

relations

(E[𝐷̃𝐴̃])2 = [Cor(𝐷̃, 𝐴̃)]2E[𝐷̃2] = 𝑅2

𝐷̃∼𝐴̃E[𝐷̃2],

(E[𝑌̄𝐴̄])2 = [Cor(𝑌̄, 𝐴̄)]2E[𝑌̄2]E[𝐴̄2] = 𝑅2

𝑌̄∼𝐴̃E[𝑌̄2]E[𝐴̄2],

E[𝐴̄2] = 1 − 𝑅2

𝐴̃∼𝐷̃ = 1 − 𝑅2

𝐷̃∼𝐴̃;

and by noting that by definition 𝑅2

𝑌̄∼𝐴̄ = 𝑅2

𝑌̃∼𝐴̃|𝐷̃ .



12 Unobserved Confounders, Instrumental Variables, and Proxy
Controls 339

Partially Linear Outcome IV Model:

Theorem 12.3.2

First note that since E[𝑍̃ | 𝑋] = 0, we can re-write the moment

condition as

E[(𝑌 − 𝛼𝐷)𝑍̃] = 0.

We can use the structural equation for 𝑌 to replace 𝑌 in the

moment equation:

E[(𝑔𝑌(𝜖𝑌)𝐷 + 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌) − 𝛼𝐷)𝑍̃] = 0.

Furthermore, since 𝑍̃ ⊥⊥ 𝐴, 𝜖𝑌 | 𝑋, we have that

E[ 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌)𝑍̃] = E[ 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌)E[𝑍̃ | 𝑋, 𝐴, 𝜖𝑌]]
= E[ 𝑓𝑌(𝐴, 𝑋, 𝜖𝑌)E[𝑍̃ | 𝑋]] = 0.

Thus, we can re-write the moment equation as

E[(𝑔𝑌(𝜖𝑌)𝐷 − 𝛼𝐷)𝑍̃] = 0.

Solving for 𝛼 and using the fact that 𝜖𝑌 ⊥⊥ 𝑍̃, we get

𝛼 =
E[𝑔𝑌(𝜖𝑌)𝐷𝑍̃]

E[𝐷𝑍̃]
=

E[𝑔𝑌(𝜖𝑌)]E[𝐷𝑍̃]
E[𝐷𝑍̃]

= E[𝑔𝑌(𝜖𝑌)].

Partially Linear Compliance IV Model:

Theorem 12.3.3

Using the exact same arguments as in the proof of Theo-

rem 12.3.2, we can deduce that the solution to the moment

restriction takes the form

𝛼 =
E[𝑔𝑌(𝑋, 𝐴, 𝜖𝑌)𝐷𝑍̃]

E[𝐷𝑍̃]
=

E[𝑔𝑌(𝑋, 𝐴, 𝜖𝑌)E[𝐷𝑍̃ | 𝑋, 𝐴, 𝜖𝑌]]
E[𝐷𝑍̃]

.

We now use the assumptions on the structural response func-

tions of 𝐷 and 𝑍 to argue that E[𝐷𝑍̃ | 𝑋, 𝐴, 𝜖𝑌] = E[𝐷𝑍̃] –

that is, to argue the covariance of 𝐷 and 𝑍 (aka compliance) is

independent of 𝑋, 𝐴, 𝜖𝑌 . This independence then implies the

theorem, since

𝛼 = E[𝑔𝑌(𝑋, 𝐴, 𝜖𝑌)].

First, we use the assumption on the structural response function
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of 𝐷:

E[𝐷𝑍̃ | 𝑋, 𝐴, 𝜖𝑌] = E[(𝑔𝐷(𝜖𝐷)𝑍 + 𝑓𝐷(𝑋, 𝐴, 𝜖𝐷))𝑍̃ | 𝑋, 𝐴, 𝜖𝑌].

Using the fact that 𝑍 ⊥⊥ 𝐴, 𝜖𝐷 , 𝜖𝑌 | 𝑋 and that E[𝑍̃ | 𝑋] = 0, we

can remove the term 𝑓𝐷(𝑋, 𝐴, 𝜖𝐷) from the above equation:

E[𝐷𝑍̃ | 𝑋, 𝐴, 𝜖𝑌] = E[𝑔𝐷(𝜖𝐷)𝑍𝑍̃ | 𝑋, 𝐴, 𝜖𝑌].

Using the additively separable assumption on the structural

response of 𝑍 and the fact that 𝜖𝑍 is an exogenous independent

variable, we have

E[𝐷𝑍̃ | 𝑋, 𝐴, 𝜖𝑌] = E[𝑔𝐷(𝜖𝐷)𝑍𝜖𝑍 | 𝑋, 𝐴, 𝜖𝑌]
= E[𝑔𝐷(𝜖𝐷)𝜖2

𝑍 | 𝑋, 𝐴, 𝜖𝑌] = E[𝑔𝐷(𝜖𝐷)𝜖2

𝑍]

where we used the fact that all noise variables 𝜖𝐷 , 𝜖𝑌 , 𝜖𝑍 are

exogenous and mutually independent.

Linear Proxy Model: Theorem 12.5.1.

We substitute 𝐴̃ = (𝑆̃ − 𝜖𝑆)/𝜙 in the equation 𝑌̃ = 𝛼𝐷̃ + 𝛿𝐴̃ +
𝜄𝑆̃ + 𝜖𝑌 to obtain

𝑌̃ = 𝛼𝐷̃ + 𝛿̄𝑆̃ +𝑈

where

𝑈 = −𝛿𝜖𝑆/𝜙 + 𝜖𝑌 and 𝛿̄ = 𝜄 + 𝛿/𝜙.

To verify

E [𝑈] = 0,

we observe using repeated substitutions that

▶ 𝐷̃ is a linear combination of (𝜖𝐴 , 𝜖𝑄 , 𝜖𝐷),
▶ 𝑄̃ is a linear combination of 𝜖𝐴 and 𝜖𝑄 .

▶ 𝑈 is a linear combination of (𝜖𝑆 , 𝜖𝑌).

The conclusion follows from the assumption that

(𝜖𝐴 , 𝜖𝑄 , 𝜖𝐷 , 𝜖𝑆 , 𝜖𝑌)

are all uncorrelated. The conclusion that 𝛼 is identified provided

that 𝐷̃ and the best linear predictor of 𝑆̃ using 𝑄̃ and 𝐷̃ have

non-degenerate covariance matrices is left as an exercise.
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The LATE Result: Theorem 12.4.1

We can use, for example, the backdoor criterion to conclude

that

E[E[𝐷 | 𝑍 = 𝑧, 𝑋]] = E[E[𝐷(𝑧) | 𝑋]] = E[𝐷(𝑧)].

Similarly,

E[E[𝑌 | 𝑍 = 𝑧, 𝑋]] = E[E[𝑌(𝐷(𝑧)) | 𝑋]] = E[𝑌(𝐷(𝑧))].

Furthermore, by monotonicity, we have both

𝜃2 = E[𝐷(1) − 𝐷(0)] = P(𝐷(1) > 𝐷(0))

and

𝜃1 = E[𝑌(𝐷(1)) − 𝑌(𝐷(0))]
= E[(𝑌(1) − 𝑌(0))1{𝐷(1) > 𝐷(0)}].

Therefore

𝜃1/𝜃2 = E[𝑌(1) − 𝑌(0) | 𝐷(1) > 𝐷(0)].

Testable Restriction for the IV Quantile Model:

Theorem 12.4.2

The result is immediate from (i) the equivalence of the event

𝑌 ≤ 𝑓𝑌(𝐷, 𝑋, 𝑢) and the event 𝜖𝑌 ≤ 𝑢, which holds under the

strict monotoniticity assumption, and (ii) the independence of

𝜖𝑌 from 𝑍 and 𝑋 which follows from the stated independence

conditions. Using (i) and (ii), we have

P[𝑌 ≤ 𝑓𝑌(𝐷, 𝑋, 𝑢) | 𝑍, 𝑋] = P[𝜖𝑌 ≤ 𝑢 | 𝑍, 𝑋]

= P[𝜖𝑌 ≤ 𝑢] = P[𝑈(0, 1) ≤ 𝑢] = 𝑢.

Identification in the Nonlinear Proxy Variables

Model: Theorem 12.6.1

To sketch a proof, the DAG implies that the observed vari-

ables 𝐷,𝑌, 𝑄, 𝑆 and the unobserved variable 𝐴 obey the two

conditional independence relations:

(𝑖) 𝑆 ⊥⊥ (𝑄, 𝐷) | 𝐴 (𝑖𝑖) 𝑄 ⊥⊥ 𝑌 | (𝐴, 𝐷). (12.A.2)
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These in turn imply

Π(𝑆 | 𝑄, 𝑑) = Π(𝑆 | 𝑄, 𝐴, 𝑑)Π(𝐴 | 𝑄, 𝑑)

= Π(𝑆 | 𝐴)Π(𝐴 | 𝑄, 𝑑)

and

Π(𝑦 | 𝑄, 𝑑) = Π(𝑦 | 𝑄, 𝐴, 𝑑)Π(𝐴 | 𝑄, 𝑑)

= Π(𝑦 | 𝐴, 𝑑)Π(𝐴 | 𝑄, 𝑑).

We now want to solve these equations for Π(𝑦 | 𝐴, 𝑑) in terms

of quantities that could be learned in the data.

We will need invertibility of Π(𝑆 | 𝑄, 𝑑) which requires in-

vertibility of both Π(𝑆 | 𝐴) and Π(𝐴 | 𝑄, 𝑑). Under these

invertibility conditions, we have

Π(𝐴 | 𝑄, 𝑑) = Π(𝑆 | 𝐴)−1Π(𝑆 | 𝑄, 𝑑)

and

Π(𝑦 | 𝑄, 𝑑) = Π(𝑦 | 𝐴, 𝑑)Π(𝑆 | 𝐴)−1Π(𝑆 | 𝑄, 𝑑),

which yield

Π(𝑦 | 𝐴, 𝑑) = Π(𝑦 | 𝑄, 𝑑)Π(𝑆 | 𝑄, 𝑑)−1Π(𝑆 | 𝐴).

Next, because 𝐴 blocks backdoor paths between 𝐷 and 𝑌, we

have that

𝑝(𝑦 | 𝑎 : 𝑑𝑜(𝑑)) = 𝑝(𝑦 | 𝑎, 𝑑) (12.A.3)

or, after integrating out 𝑎,

𝑝(𝑦 : 𝑑𝑜(𝑑)) = Π(𝑦 | 𝐴, 𝑑)Π(𝐴),

which can be further expressed as

Π(𝑦 | 𝑑, 𝑄)Π(𝑆 | 𝑄, 𝑑)−1 Π(𝑆) , (12.A.4)

using the derivations above.
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