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"if ’good’ is taken to mean ’best’ fit, it is tempting to

include anything in 𝑥 that helps predict [treatment]"

– Jeffrey Wooldridge [1].

DAGs give us an intuitive approach to take domain knowledge

and turn it into an identification strategy. In this section, we

focus on identification by conditioning and discuss graphical

criteria that lead to the construction of valid adjustment sets

for the identification of average causal effects via regression

adjustment. We also discuss how graphical criteria can help us

differentiate between "good" and "bad" controls.
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1: See [2] for a more detailed dis-

cussion of identification by condi-

tioning under limited knowledge

of DAGs.

11.1 Valid Adjustment Sets

We discussed formally the general principles for finding valid

adjustment sets in the previous chapter dedicated to the DAGs.

Here we quickly review these principles before discussing

others, and going into many examples of how these strategies

help identify good and bad controls.

Consider any variable 𝐷 of an ASEM as a treatment of interest

and any of its descendants 𝑌 as an outcome of interest. An

adjustment set 𝑆 is said to be valid for identification of the

causal effect of𝐷 on𝑌 if the conditional exogeneity/ignorability

condition holds

𝑌(𝑑) ⊥⊥ 𝐷 | 𝑆.

We first recall the counterfactual DAG approach.

We write down the counterfactual DAG induced by the

fix(𝐷 = 𝑑) intervention, which operates on all structural

equations defining the descendants of𝐷 by setting𝐷 = 𝑑 in

these equations. Then, if we have that the potential outcome

𝑌(𝑑) is 𝑑-separated from the (policy) variable 𝐷 by a set of

variables 𝑆, then 𝑆 is a valid adjustment set.

We also recall the "blocking backdoor paths" approach that

operates in the factual DAG.

The adjustment set 𝑆 is valid if the backdoor criterion is

satisfied in the factual DAG: No element of 𝑆 is a descendant

of 𝐷, and all backdoor paths from 𝑌 to 𝐷 are blocked by

𝑆.

Recall that the basic idea is that if we block the backdoor path,

we remove all channels of non-causal association between 𝐷

and 𝑌.

11.2 Other Useful Adjustment Strategies

The strategies above are good general strategies for finding valid

adjustment sets or finding "good controls". We next present

Some of these strategies are quite helpful because they are

either very simple to apply or can also be used under partial

knowledge of the DAG.
1

The strategies are derived from the
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𝑋1

𝑋2
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𝑀

𝑌

Figure 11.1: A DAG in Pearl’s Ex-

ample.

general principles described above.

We consider the following approaches that allow us to identify

the causal effect of D on Y:

▶ Conditioning on all parents of 𝐷, or the design approach

(includes conditioning on the propensity score).

▶ Conditioning on all parents of𝑌 that are not descendants

of 𝐷,

▶ Conditioning on all parents of both 𝐷 and 𝑌 is sufficient.

▶ Conditioning on all common causes of 𝐷 and 𝑌 is also

sufficient.

▶ Conditioning on the union of causes of 𝐷 and 𝑌 is also

sufficient.

All of these methods have different advantages and robustness

properties as we discuss below.

Conditioning on Parents

A very simple strategy is conditioning on one of the parents of

𝐷, the parents of 𝑌, or the parents of both 𝐷 and 𝑌.

Example 11.2.1 (Pearl’s Example Continued) One simple

principle is that conditioning on parents of 𝐷, namely 𝑋1 and

𝑋2, is sufficient. Alternatively, conditioning on all parents

of 𝑌 that are non-descendants of 𝐷, namely 𝑋2 and 𝑋3, is

also sufficient. We should not condition on 𝑀, because it is a

descendant of 𝐷.

Corollary 11.2.1 (Adjustment for Parents) Consider any ASEM

with a treatment node 𝐷 and an outcome of interest 𝑌, a de-

scendant of 𝐷.

▶ Let 𝑍 be all parents of 𝐷, and let 𝐴 be any other set of

nodes that are not descendants of 𝐷. Then 𝑆 = (𝐴, 𝑍)
is a valid adjustment set.

▶ Let 𝑍 be the set of all parents of 𝑌 that are non-

descendants of𝐷 and let 𝐴 be any other set that are not

descendants of𝐷. Then 𝑆 = (𝐴, 𝑍) is a valid adjustment

set.

Note that 𝐴 is allowed to be an empty set. Also note that, in

the second case, the additional adjustment set 𝐴 is redundant,

since p(𝑦 | 𝑎, 𝑧, 𝑑) = p(𝑦 | 𝑧, 𝑑) in this case.
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𝑋 = (𝑋1, 𝑋2, 𝑋3)

𝐷

𝑀

𝑌

Figure 11.2: Reduced DAG for

Pearl’s Example

Adjusting for parents is a very useful strategy, because it only

requires knowledge of parents in a DAG without precise knowl-

edge of the remaining graph structure. Conditioning on parents

is also behind the propensity score strategies used in many

experimental or quasi-experimental empirical analyses. If the

propensity score is known, it can be used as a parent of 𝐷

itself. Finally, conditioning on parents of 𝑌 is most useful for

attaining maximal statistical efficiency, but may be less robust

than conditioning on both sets of parents under unforeseen

deviations from the given graph structure. See [2] for further

detailed discussion of robustness of adjusting for both sets of

parents.

Conditioning on All Common Causes of 𝐷 and 𝑌

Another simple and widely used adjustment strategy is con-

ditioning on all common causes of the outcome variable of

interest and the treatment variable.

Example 11.2.2 (Pearl’s Example Again, using the All Com-

mon Causes Criterion) The set of common causes of𝐷 and𝑌

is {𝑍1, 𝑍2, 𝑋2}. This set is a valid adjustment set that differs

from the sets found using the parental strategy. We can push

the All Common Causes criterion further. For example, we

can omit 𝑍1 and 𝑍2 from the DAG, and we can create a new

node 𝑋 = (𝑋1, 𝑋2, 𝑋3) producing the DAG shown in Figure

11.2. This DAG corresponds to a valid ASEM model where 𝑋

now represents all common causes of 𝐷 and 𝑌, making it a

sufficient adjustment set. This set is bigger than some of the

sets found by the previous criteria. It is also tempting to see

if the "root common" causes 𝑍1 and 𝑍2 in the original DAG,

Figure 11.1, form a valid adjustment set – and they actually

do not (why?).

Let 𝐴𝑛𝑋 denote the set of strict ancestors of node 𝑋, where

strict means that 𝑋 is excluded. That is,

𝐴𝑛𝑋 = 𝐴𝑛𝑋 \ 𝑋.

Corollary 11.2.2 (Adjustment for All Common Causes) Con-

sider any ASEM with a treatment node 𝐷 and an outcome of

interest 𝑌, a descendant of 𝐷. Let 𝑆 be the intersection of the
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2: The content in this section draws

heavily from the excellent research

paper of Cinelli, Forney and Pearl

[3].

strict ancestors of 𝐷 and 𝑌, called the common causes:

𝑆 = (𝐴𝑛𝐷 ∩ 𝐴𝑛𝑌).

Then 𝑆 is a valid adjustment set. Furthermore, the set of

variables 𝑆′ that completely mediates the effects of 𝑆 on 𝑌

and 𝐷 also constitutes a valid adjustment set.

The strategy above is commonly used in empirical work. How-

ever, [2] recommend adjusting for the union 𝑆 of causes of 𝑌

or 𝐷 (excluding descendants of 𝐷) in practice as they formally

quantify this strategy as the maximally robust strategy under

perturbations of a specified DAG structure that preserves 𝑆.

This strategy is useful when we don’t know the parents of 𝑌 or

𝐷, but only know that 𝑆 are their ancestors.

Corollary 11.2.3 (Adjustment for the Union of Causes) Con-

sider any ASEM. Re-label a policy node 𝑋𝑗 as 𝐷, and let 𝑌,

an outcome of interest, be any other descendant of 𝐷. Let

𝑆 be the union of the ancestors of 𝐷 and 𝑌 that excludes

descendants of 𝐷 other than 𝑌:

𝑆 = 𝐴𝑛𝐷 ∪ 𝐴𝑛𝑌 \ 𝐷𝑠𝐷 .

Then 𝑆 is a valid adjustment set.

Example 11.2.3 (Pearl’s Example Continued) Application of

the Union of Causes criterion gives {𝑍1, 𝑍2, 𝑋1, 𝑋2, 𝑋3} as a

valid adjustment set.

11.3 Examples of Good and Bad Controls

We now present a series of simple example DAGs that might

arise in empirical research. Within these examples, we discuss

what would be good and bad variables to adjust for in each

case (aka good and bad controls), when one is interested in

estimating the average treatment effect of a treatment 𝐷 on an

outcome𝑌.
2

Similar to the collider bias examples we presented

in Chapter 6.3, we will see how adjusting for some of the

observed variables can introduce bias and lead to estimating

a parameter that is far from the causal effect of interest. In

each case, we will denote the candidate control of interest with

𝑍 and will denote unobserved variables with 𝑈 . We depict

unobserved variables with a dashed circle in the figures.
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We start by analyzing a group of potential control variables

that in most empirical applications would correspond to pre-
treatment variables, i.e. variables whose value was determined

prior to the treatment assignment. It is common empirical prac-

tice to adjust for as many pre-treatment variables as available in

an attempt to ensure that conditional ignorability holds. How-

ever, we will see that bias can be introduced by controlling even

for pre-treatment variables if one is not careful. Rather than

always control for all pre-treatment variables, a better approach

is to adjust only for pre-treatment variables that are ancestors

of either the treatment, the outcome, or both. If one is willing

to believe that identification by conditioning is feasible, then

following this approach is a safe strategy.

We then consider the use of post-treatment variables, i.e. variables

that correspond to quantities whose value is determined after

the treatment assignment. We will see that in this case there

are relatively few good control cases. In some cases, controlling

for post-treatment variables might not hurt and may even

improve precision (reduce variance). However, such settings

seem unlikely to be common in empirical practice. Hence, as a

high-level rule, controlling for post-treatment variables should

be avoided when one is interested in estimating causal effects.

Finally, we provide a separate discussion of post-treatment but

pre-outcome variables, i.e. variables whose value is determined

prior to the determination of the value of the outcome of interest.

Pre-outcome variables should be included if one is interested in

estimating direct effects of the treatment on the outcome while

excluding indirect effects. This type of direct effect is referred

to as a controlled direct effect to distinguish it from other forms

of direct effects appearing in mediation analysis. We will see

again that one should be careful that the mediation variables

that one conditions on are not themselves confounded through

unobserved factors even in this case.

Pre-Treatment Variables or Proxies of

Pre-Treatment Variables

Observed common causes or proxies of common causes. A

common example of a good control that we have discussed so

far is an observed common cause, 𝑍, of 𝐷 and 𝑌 (Figure 11.3a).

Even if the common cause is unobserved, it suffices that we have

a proxy control variable that controls all the information flow

to either the treatment (complete treatment proxy; Figure 11.3b)

or to the outcome (complete outcome proxy; Figure 11.3c).
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Controlling for such a proxy also blocks the backdoor path

𝐷 ← 𝑈 → 𝑌. Of course, the proxy blocking the backdoor path

only holds if the proxy variable captures all the information

flow from the unobserved confounder. If, for instance, there are

also direct paths from the unobserved variable to the treatment

(in the case of a treatment proxy), then controlling for a proxy

does not remove confounding bias. In this case, we will see

that one can follow more advanced approaches related to proxy

controls under additional structure in Chapter 12.

𝑍

𝐷

𝑌

(a)

𝑍

𝑈

𝐷

𝑌

(b)

𝑈

𝑍

𝐷

𝑌

(c)

Figure 11.3: Good controls: (a) ob-

served common cause, (b) com-

plete treatment proxy control of un-

observed common cause, (c) com-

plete outcome proxy control of un-

observed common cause.

Example 11.3.1 (Effect of Multivitamin Consumption on Birth

Defects [4]) Suppose we want to estimate the effect of pre-

natal multivitamin consumption 𝐷 on birth defects 𝑌. One

factor that can potentially influence a mother’s decision on

multivitamin consumption is prior history of birth defects in

the family (𝑍); see e.g. [5]. Such prior history is possibly due

to unobserved genetic factors𝑈 that also have a direct effect

on the risk of malformation 𝑌; see e.g. [6]. In this case, family

medical history 𝑍 provides a complete treatment proxy of

the unobserved confounder (as in Figure 11.3b) as long as the

behavior of a mother is solely driven by the family medical

history. Controlling for medical history would thus remove

the confounding bias in this scenario.

Confounded mediators with observed common cause or prox-

ies of unobserved common cause. It is important to note that

confounding occurs even when there exists a common cause

𝑍 of the treatment 𝐷 and some mediator 𝑀 in a path from

𝐷 to 𝑌 (Figure 11.4a). In such cases, if we don’t condition on

the common cause of 𝐷 and 𝑀, there is an open backdoor

path 𝐷 ← 𝑍 → 𝑀 → 𝑌. In such cases, 𝑍 is a good control

as it blocks this backdoor path. Similarly, if a common cause

𝑈 of 𝐷 and 𝑀 is unobserved, but some complete treatment

proxy control 𝑍 (Figure 11.4b) or some complete outcome proxy

control 𝑍 (Figure 11.4c) is observed, then it suffices to adjust for

this proxy 𝑍.
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𝑍

𝑀

𝐷

𝑌

(a)

𝑍

𝑈

𝐷

𝑀

𝑌

(b)

𝑈

𝑍

𝑀

𝐷

𝑌

(c)

Figure 11.4: Good controls: (a) con-

founded mediator with observed

common cause, (b) confounded

mediator, with observed complete

treatment proxy control of unob-

served common cause, (c) con-

founded mediator with observed

complete outcome proxy control of

unobserved common cause.

Causes of only treatment or only outcome. As stated in Corol-

lary 11.2.3, a conservative empirical practice is to include the

union of parents of 𝐷 and 𝑌 in the adjustment set. Including

variables that are parents of the outcome (Figure 11.5a) can

lead to reduced variance during estimation as explained in

Chapter ?? where we discuss including pre-treatment covari-

ates in RCTs. Including variables 𝑍 that affect the treatment

𝐷 but have no causal path to the outcome (Figure 11.5b) is

potentially more controversial. Including these variables does

not introduce bias. However, their inclusion can be detrimental

for precision, as such variables can potentially explain away all

of the useful variation in the treatment, leaving little variation

for the identification of causal effects.

𝑍

𝐷

𝑌

(a)

𝑍

𝐷

𝑌

(b)

Figure 11.5: Neutral controls: (a)

Outcome-only cause. Can improve

precision; decrease variance. (b)

Treatment-only cause. Can de-

crease precision; introduce vari-

ance.

Even more importantly, when there are unobserved common

causes of 𝐷 and 𝑌 as illustrated in Figure 11.6, adjusting for

a treatment-only cause, 𝑍, can exacerbate the bias stemming

from unobserved confounding. Essentially, controlling for 𝑍

removes exogenous variation in the treatment𝐷 that is useful for

identifying the causal effect but leaves the confounded variation

- as 𝑍 is not related directly to the unobserved confounder𝑈 .

As such, the resulting estimated effect may be essentially driven

by the unobserved confounder and thus be heavily biased. For

this reason, one should avoid controlling for variables that are
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𝑈1

𝑈2

𝑍

𝐷

𝑌

Figure 11.7: Bad control. M-Bias.

Pre-treatment variable that intro-

duces Heckman selection bias

between two uncorrelated unob-

served causes.

known to have no causal path to the outcome that does not pass

through the treatment. As we study in Chapter 12, such variables

are known as instrumental variables. These variables can be

thought as inducing natural experiments that can be leveraged

for causal identification even in the presence of unobserved

confounding. However, we need to use alternative identification

– instrumental variable – arguments and estimation strategies

to make use of instruments. We introduce these instrumental
variable approaches in Chapter 12 and Chapter 13. Importantly,

instruments should not be used in an identification by adjustment

strategy.

𝑈

𝑍 𝐷 𝑌

Figure 11.6: Bad control. Bias ampli-

fication by adjusting for an instru-
ment. Treatment-only cause (instru-
ment) that can amplify unobserved

confounding bias.

M-bias. The DAG in Figure 11.7, typically referred to in the

literature as the M structure, is the source of much debate;

see e.g. [7, 8]. If such cases were impossible, the high-level

strategy of controlling for all pre-treatment variables when

attempting to identify causal effects by conditioning would

be an unambiguously safe empirical route resulting in no

harm other than potentially increasing variance by including

an instrument. However, this structure shows that there exist

settings where adjusting for a pre-treatment covariate𝑍 can lead

to a wrong causal effect, while not adjusting for 𝑍 would have

yielded the correct causal effect. A better high-level strategy is

the one highlighted in the prior sections: If we are willing to

assume that identification by conditioning is possible, then we

should adjust only for pre-treatment variables that are either an

ancestor of the treatment, of the outcome, or of both treatment

and outcome.

More concretely, in the M structure graph (Figure 11.7), 𝐷 and

𝑌 are driven by two independent unobserved causal factors

𝑈1, 𝑈2. The variable 𝑍 is a common outcome of these two un-

observed causal factors. When conditioning on 𝑍, we introduce

collider bias between𝑈1, 𝑈2, making them correlated factors.

Conditioning on 𝑍 can thus lead to a causal effect estimate that

is solely driven by this spurious correlation between𝑈1 and𝑈2,

introduced by the collider bias. In graphical terms, adjusting

for 𝑍 closes the path 𝐷 ← 𝑈1 → 𝑍← 𝑈2 → 𝑌(𝑑) in the SWIG

DAG G̃(𝑑) produced by the fix(𝐷 = 𝑑) operation. However,
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there is no open path connecting 𝐷 to 𝑌(𝑑) when we do not

condition on 𝑍. Hence, the effect identified by not adjusting

for any variable is the correct causal effect within this example

structure.

Example 11.3.2 (Homophily bias in estimating peer effects)

A classical example where M-bias arises in empirical work

in social sciences is in the estimation of peer effects on social

networks [9, 10]. As a concrete example, suppose that we want

to understand the spread of civic engagement among friends.

Suppose that we look at data that consist of friendship pairs

and let 𝐷 be the level of civic engagement level of one friend

at time 𝑡 and 𝑌 the level of civic engagement of the other

friend at time 𝑡 + 1. Note that when we are estimating the

correlation of these two variables, we are implicitly condi-

tioning on the friendship variable 𝑍, since we only have data

from friendship pairs. Due to homophily Homophily refers to the tendency

to associate with similar individ-

uals - i.e. similar people tend to

become friends.

, friendship could be

driven by the unobserved intrinsic characteristics of each of

the two individuals (𝑈1 and𝑈2 in Figure 11.7). It is reasonable

to assume that these characteristics are independent as they

are determined well before any friendship is formed. More-

over, these qualitative characteristics (e.g. levels of altruism)

could very well have a direct effect on each individual’s civic

engagement. Thus, the estimation of peer effects can be biased

due to the M-bias.

Finally, note that the M-bias argument is very sensitive to the

exact independence of the unobserved factors𝑈1, 𝑈2. In most

empirical applications, we expect these unobserved factors that

drive the treatment and outcome of interest to be correlated

with each other as in Figure 11.8a. In this case, note that even if

we don’t adjust for 𝑍, the calculated effect is biased due to the

backdoor path 𝐷 ← 𝑈1 → 𝑈2 → 𝑌. Thus, neither adjusting

nor not adjusting for 𝑍 gives the correct answer.

Moreover, it is not clear whether adjusting for 𝑍 increases

or decreases the correlation between 𝑈1 and 𝑈2 and hence

exacerbates or ameliorates the confounding bias. Similarly, if

𝑍 itself has a direct effect on the outcome (as in Figure 11.8b),

on the treatment, or on both (as in Figure 11.8c), then not

adjusting for 𝑍 opens the backdoor paths 𝐷 ← 𝑈1 → 𝑍→ 𝑌

and 𝐷 ← 𝑍 → 𝑌, correspondingly. Hence, it is not clear that

removing the bias induced by these open backdoor paths, by

adjusting for𝑍, is more beneficial than the extra M-bias incurred

by closing the path 𝐷 ← 𝑈1 → 𝑍 ← 𝑈2 → 𝑌. Work of [7, 11]

argues that M-bias in many realistic data generating processes

is of lower order than confounding bias and therefore argues
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that one should err on the side of adjusting for pre-treatment

covariates even in the potential presence of M-bias. [8] provides

a counterpoint, arguing that the strength of the different biases

will differ in general and thus careful consideration of the

strength of each of the causal paths at play should be done on a

case-by-case basis.

𝑈1

𝑈2

𝑍

𝐷

𝑌

(a)

𝑈1

𝑈2

𝑍

𝐷

𝑌

(b)

𝑈1

𝑈2

𝑍

𝐷

𝑌

(c)

Figure 11.8: No control solutions:

(a) M-bias with correlated unob-

served factors. (b) M-Bias with con-

founding. Pre-treatment variable

that introduces Heckman selection

between two uncorrelated unob-

served causes and is a confounder

itself. (c) Butterfly Bias. M-bias with

direct confounding.

Post-Treatment Variables

Now we turn to adjustment for post-treatment variables. The

general message of this section is that explicitly adjusting for

post-treatment variables is almost always a bad idea. Impor-

tantly, the general message implies that researchers should be

careful to avoid implicitly adjusting for post-treatment variables

through the way they have structured their observational anal-

ysis, data collection, and variable definitions – see e.g. [4] for

examples from epidemiology. For instance, when estimating the

effect of education on wages using data on employed individuals,

we are implicitly conditioning on "employment" which is a

post-treatment variable and can lead to selection bias.

Mediation. A common way a post-treatment variable can lead

to bias in identifying the full causal effect of𝐷 on𝑌 is if it lies on

a causal path from the treatment to the outcome (Figure 11.9a).

In this case, the causal influence that flows through that path

is blocked and we are only measuring a partial effect. It is

important to note, that the causal influence of such a path can

be partially blocked even if one conditions on a descendant of

the mediator (Figure 11.9b).
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𝑀

𝑍

𝐷 𝑌

Figure 11.10: Neutral control.

Cause of a mediator. Can poten-

tially improve precision.

𝑍

𝑈

𝐷 𝑌

Figure 11.11: Bad control even

for the controlled direct effect. Con-

founded mediator bias.

𝑍𝐷 𝑌

(a)

𝑀

𝑍

𝐷 𝑌

(b)

Figure 11.9: Bad controls for learn-

ing the full effect of 𝐷 on 𝑌: (a)

over-control bias, by controlling for

a mediator. (b) over-control bias, by

controlling for an outcome caused

by a mediator.

Interestingly, controlling for an ancestor of a mediator (Fig-

ure 11.10) does not impede us from learning the full direct

effect of 𝐷 on 𝑌. In this case, the flow through the causal path

𝐷 → 𝑀 → 𝑌 is not blocked by𝑍. For example, d-separation can

be easily checked in the SWIG G̃(𝑑) produced by fix(𝐷 = 𝑑).

When we are controlling for a post-treatment variable that

mediates the effect of the treatment as in Figure 11.9a, we are

only capturing direct effects from the treatment to the outcome

that do not work through this mediator. This type of direct

effect after controlling for mediators is typically referred to as a

controlled direct effect. Identifying the controlled direct effect is

many times a relevant empirical question, in which case con-

trolling for 𝑍 is not problematic. However, even when we are

interested in the controlled direct effect, we should pay atten-

tion to cases where the mediators are themselves confounded

through unobserved factors as illustrated in Figure 11.11. In

such settings, by controlling for the mediator, we are opening a

collider path 𝐷 → 𝑍← 𝑈 → 𝑌 which can lead to severe bias,

such as calculating non-zero direct effects even when they are

zero.

Heckman selection bias. Another common way that post-

treatment variables can lead to bias is due to collider bias

or Heckman selection, as described in Chapter 6.3. In this

case, conditioning on the post-treatment variable introduces

spurious correlations between the treatment variable and some

other variable which opens new paths of non-causal influence

from the treatment to the outcome. For instance, Figure 11.12a

corresponds to the low birthweight paradox we presented

in Example 6.3.2. Similarly, Figure 11.12b corresponds to the

(Hollywood) Example 6.3.1. Finally, Figure 11.12c arises when

we are controlling for an outcome of the outcome, perhaps even

without realizing this.
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𝐷

𝑍 𝑌

𝑈

(a)

𝑍

𝐷

𝑌

(b)

𝑍𝐷 𝑌

(c)

Figure 11.12: Bad controls: (a) col-

lider stratification bias (e.g. low

birth-weight "paradox" example),

(b) collider stratification bias, (c)

controlling for an outcome of the

outcome of interest.

Example 11.3.3 (The Industrial Growth Puzzle [12]) In a study

conducted during the nineteenth century in the U.S. and U.K.,

it was found that despite nutrition quality𝐷 having improved,

the height of men 𝑌 decreased. One possible explanation of

the results of this study is that the subjects of the study were

people who were enlisted in the army or in prison. Both of

these variables, enlisted in the army and being in prison, are

plausibly determined after the outcome variable of height

is realized. It might, for example, be that taller men had

more civilian opportunities growing up and did not end

up enlisting in the army. In this case, looking at a sample

of enlistees is implicitly controlling for an outcome of the

outcome of interest which could lead to a biased estimate of

the effect of nutrition on height.

There are of course some edge cases where controlling for a

post-treatment variable 𝑍 does not lead to selection bias – e.g.

Figure 11.13a and Figure 11.13b. In each of these two cases, the

post-treatment variable is not a collider on a path from 𝐷 to

𝑌. However, it is not clear that adjusting for 𝑍 improves the

analysis in any respect even in these cases, and adjusting for 𝑍

could potentially hurt precision.

𝑍

𝐷 𝑌

(a)

𝐷

𝑍

𝑊 𝑌

𝑈

(b)

Figure 11.13: Neutral controls: (a)

outcome of the treatment that is

unrelated to the outcome of inter-

est, (b) outcome of the treatment

that does not introduce Heckman

selection.
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11.4 Notebooks

Notebook 11.4.1 (DAGs) R: Dagitty Notebook employs the

R package "dagitty" to analyze some simple DAGs as well as

Pearl’s Example. This package automatically finds adjustment

sets and also lists testable restrictions in a DAG. Python:

Pgmpy Notebook employs the analogue with Python package

"pgmpy" and conducts the same analysis.

11.5 Exercises

Exercise 11.5.1 (Pearl’s Example continued) The study prob-

lems ask learners to continue the analysis of Pearl’s Example

DAG that we started in the Study Problems to Chapter 7. The

provided notebooks are a useful starting point. Recall that

Pearl’s Example is structured as follows:

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷

𝑀

𝑌

Figure 11.14: Pearl’s Example

1. For Pearl’s Example, write out the parents, non-parents,

descendants, and non-descendants of nodes 𝑋2 and 𝑀.

List all the backdoor paths between 𝑌 and 𝑋2. Can you

identify the effect of 𝑋2 on 𝑌 by conditioning?

2. (Front-Door-Criterion) For Pearl’s Example, show that

we can identify the effect 𝐷 → 𝑀 by conditioning on

an empty set and the effect 𝑀 → 𝑌 by conditioning

on 𝐷. Combining the two results, we can identify the

total effect of 𝐷 on 𝑌. Solving this exercise analytically

is a nice exercise; you can compare your results against

causal identification packages. (Identification via this

strategy is known as the Front-Door criterion; see Ap-

pendix 11.A.

3. Add an arrow 𝑍2 → 𝑍1 in Pearl’s Example and figure

out how to identify the effect of 𝐷 → 𝑌 by condition-

ing, of 𝐷 → 𝑀 by conditioning, and of 𝑀 → 𝑌 by

conditioning. (Note that valid conditioning sets may be

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/r-dagitty.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/CM3/python-pgmpy.ipynb
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empty.) Can you identify the effect of 𝑋2 → 𝑌? If so,

how? You may solve this analytically or using a causal

identification package.

4. Add an arrow 𝑋1 → 𝑀 in Pearl’s Example and figure

out how to identify the effect of 𝐷 → 𝑌 by condition-

ing, of 𝐷 → 𝑀 by conditioning, and of 𝑀 → 𝑌 by

conditioning. Can you identify the effect of 𝑋2 → 𝑌?

If so, how? You may solve this analytically or using a

causal identification package.

5. Try to ask an instruction-following LLM (such as Chat-

GPT) about identification and valid adjustment sets,

both for the original Pearl’s Example as well as the

variations in the latter two problems. Can you verify or

find mistakes in the response? If you find mistakes, how

might they be corrected? When mistakes are pointed

out to the LLM, is it able to correct them? For exam-

ple, you can try starting with the following prompt and

make variations on it: “I have a causal graph with nodes

Z1, Z2, X1, X2, X3, D, M, Y and edges Z1->X1, Z1->X2,

Z2->X2, Z2->X3, X1->D, X2->D, X2->Y, X3->Y, D->M,

M->Y. Is the effect of D on Y identified? What are the

valid adjustment sets?"

11.A Front-Door Criterion via Example

We examine identification in Pearl’s Example (Figure 11.1), via

the front-door criterion. First note that we can write the potential

outcome of interest 𝑌(𝑑) as 𝑌(𝑀(𝑑)), since in the SWIG 𝐺̃(𝑑)
there is no other path from 𝑑 to𝑌(𝑑) other than through𝑀(𝑑).

E[𝑌(𝑑)] = E[𝑌(𝑀(𝑑))]

=

∫
E[𝑌(𝑀(𝑑)) | 𝑀(𝑑) = 𝑚]P(𝑀(𝑑) = 𝑚)𝑑𝑚

=

∫
E[𝑌(𝑚) | 𝑀(𝑑) = 𝑚]P(𝑀(𝑑) = 𝑚)𝑑𝑚

Suppose that we make a further surgery to the SWIG graph

in Figure 7.8 by adding an intervention on the variable 𝑀(𝑑),
i.e. take the modified SWIG graph induced by intervention

fix(𝐷 = 𝑑) and on that graph make a further intervention

fix(𝑀(𝑑) = 𝑚). This leads to the new SWIG:
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3: See Exercise 2.

4: Prove this as a reading exercise.

𝑋1

𝑋2

𝑋3

𝑍1

𝑍2

𝐷 𝑑

𝑀(𝑑)
𝑚

𝑌(𝑚)

Figure 11.15: The DAG induced by

a recursive Fix/SWIG intervention

fix(𝑀(𝑑) = 𝑚) on the SWIG in Fig-

ure 7.8.

Note that in this SWIG, we have𝑌(𝑚) ⊥⊥ 𝑀(𝑑). Thus we have:

E[𝑌(𝑚) | 𝑀(𝑑) = 𝑚] = E[𝑌(𝑚)],

leading to the front-door formula:

E[𝑌(𝑑)] =
∫

E[𝑌(𝑚)]P(𝑀(𝑑) = 𝑚)𝑑𝑚

The term E[𝑌(𝑚)] is the mean counterfactual response of 𝑌

when we intervene on 𝑀 and P(𝑀(𝑑) = 𝑚) is the probability

law of the counterfactual response of 𝑀 when we intervene

on 𝐷. Both of these interventional quantities can be separately

identified via backdoor adjustment. More concretely, E[𝑌(𝑚)] =
E[E[𝑌 | 𝑀 = 𝑚, 𝐷]], and P(𝑀(𝑑) = 𝑚) = P(𝑀 = 𝑚 | 𝐷 = 𝑑).3
Note that under linearity assumptions on the CEFs – i.e. E[𝑌 |
𝑀 = 𝑚, 𝐷] = 𝛼𝑚 + 𝛽𝐷 + 𝑐 and E[𝑀 | 𝐷 = 𝑑] = 𝛾𝑑 + 𝛿 – we

get E[𝑌(1) − 𝑌(0)] = 𝛼𝛾.
4

Thus, the average treatment effect

𝛼𝛾, can be estimated by estimating 𝛼 via OLS of 𝑌 on 𝑀, 𝐷

and 𝛾 via OLS of 𝑀 on 𝐷.
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