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"It’s all about paying attention. [...] Attention is

vitality. It connects you with others."

– Susan Sontag [1].

Here we discuss feature engineering as an approach to trans-

form complex objects such as text and images into a collection

of relatively low-dimensional numerical features (embeddings)

that can be used for standard predictive or causal applications,

for example as regressors in a prediction problem. We consider

principal components, autoencoders and neural networks as

general approaches to generate embeddings. We then consider

text embeddings in detail, introducing two popular neural

network-based Natural Language Processing (NLP) algorithms:

ELMo and BERT. We finally consider image embeddings, ap-

plying a hedonic price model to apparel data using a neural

network algorithm (ResNet50) to generate embeddings.
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10.1 Introduction

Thus far, we have imposed a significant restriction on the kinds

of data on which we can perform inference. While empiricists

often consider simple datasets that include variables that have

a numeric representation (binary, factor and continuous vari-

ables), researchers are increasingly confronted with complex

forms of data, such as images and text, that encode a vast amount

of information. In this section, we generalize our approach to

allow using these types of data.

As a motivating example, we consider the problem of predicting

prices of products using the types of characteristics that one

might find on a webpage, namely the text in the product

description and the product’s image. The resulting predicted

prices are called hedonic prices, and predictive modeling of this

form is motivated by the hedonic price models of economics.

In order to predict prices, we have to convert text and images

into relatively low-dimensional numerical features, called em-
beddings or encodings. The minimal requirement on embeddings

is that similar products should have similar embeddings. This

requirement guarantees that price predictions for similar prod-

ucts are also similar. The maximal requirement on embeddings

is that they should parsimoniously approximate as much in-

formation as possible from text and images that is relevant for

price predictions.

The main methods for generating successful embeddings in-

clude the following, in order of increasing generality:

▶ classical principal component analysis,

▶ autoencoders, and

▶ neural networks solving auxiliary prediction tasks.

The auxiliary tasks in the final method may include solving

image processing problems, such as object classification and

image compression, or natural language processing problems,

such as summarization and machine translation.

These auxiliary tasks are not the same as the "main" task. In our

price prediction example, the main task is predicting product

prices. Before turning to the primary price prediction task, we

might consider running our image and text data through neural

networks designed to perform well on image classification or

natural language processing. For example, one might use ResNet

50, a pretrained residual network of

depth 50, which performs well on

image classification tasks and/or

a language processing neural net-

work such as BERT. We will discuss

such neural networks later in this

chapter.

We can then extract features of

these networks – embeddings – to use as summaries of the

image and text data that are useful for predicting the image

type and semantic context of the text. For example, we could
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1: Thus, 𝔼𝑛[𝑊𝑗] = 0 for 𝑗 = 1, ..., 𝑑.

take the final hidden layer of neurons in the simple deep neural

networks discussed in Chapter 8 as our embeddings as these

neurons are the constructed features that are used in forming

the final prediction for the outcome of interest – image type or

a language processing task. These embeddings then provide

useful inputs for solving the auxiliary object classification or text

description task. Since product type and product description

are likely relevant determinants of price, these embeddings

produced by the auxiliary tasks can serve as useful inputs to

the main task – price prediction.

Embeddings are useful in a variety of predictive and causal

inference problems. For example, we can imagine using

▶ embeddings of product images and descriptions for mod-

eling variety and demand for products,

▶ embeddings of text resumes for studying the wage offer

structure,

▶ or embeddings of countries’ characteristics for studying

the effect of institutions.

There is an emerging literature on the use of embeddings for

causal inference; see this repository of papers about using text

data in causal inference.

https://github.com/causaltext/causal-

text-papers

See also [2] for a recent review article

on the importance and subtleties of using text as data in the

social sciences.

10.2 From Principal Components to

Autoencoders

Principal components are an early classical example of embed-

dings. One way to frame principal components is that principal

components find unit length orthogonal linear combinations,

directions, of a collection of variables that are "best" at reproduc-

ing the underlying data. The idea is then that a small number

of principal components should capture most of the variabil-

ity in the original variables and thus may provide a useful

low-dimensional summary of the original data.

Specifically, let (𝑊1, ...,𝑊𝑛) be a sample of 𝑛 observations of a

high-dimensional centered
1

random vector 𝑊 in ℝ𝑑
, and let

Σ𝑛 = 𝔼𝑛[𝑊𝑊 ′] ∈ ℝ𝑑×𝑑
denote the empirical covariance matrix.

In order to reduce the dimension of 𝑊 , suppose we wish to

find 𝐾 ≪ 𝑑 mutually orthogonal rotations

𝑋𝑘𝑖 := 𝑐′𝑘𝑊𝑖 , 𝑘 = 1, ..., 𝐾,

https://github.com/causaltext/causal-text-papers
https://github.com/causaltext/causal-text-papers
https://github.com/causaltext/causal-text-papers
https://github.com/causaltext/causal-text-papers
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Figure 10.1: Featurizing a tal-

ented man: The original 3072-

dimensional image 𝑊 and im-

age �̂� produced from a 256-

dimensional principal component

embedding. As a by-product, we’ve

just made an important causal dis-

covery that, surprisingly, doing em-

bedding causes one to be younger

;).

of the original𝑊𝑖’s where

𝑐′ℓ 𝑐𝑘 = 0 for ℓ ≠ 𝑘 and 𝑐′𝑘𝑐𝑘 = 1 for each 𝑘

such that linear combinations of these variables approximate the

original data. These rotations are called principal components of

𝑊𝑖 . In applications,𝑊𝑖 represent high-dimensional raw features

(images, for example), and the principal components

𝑋𝐾
𝑖 = (𝑋𝑖1, ...𝑋𝑖𝐾)′

represent a lower-dimensional encoding or embedding of𝑊𝑖 .

More formally, we wish to solve

min

{𝑎 𝑗}𝑑𝑗=1
,{𝑐𝑘}𝐾𝑘=1

𝑑∑
𝑗=1

𝑛∑
𝑖=1

(𝑊𝑗𝑖 − �̂�𝑗𝑖)2

subject to

�̂�𝑗𝑖 := 𝑎′𝑗𝑋
𝐾
𝑖 for 𝑋𝐾

𝑖 = (𝑋1𝑖 , ...𝑋𝐾𝑖)′, 𝑗 = 1, ..., 𝑑, and 𝑖 = 1, ..., 𝑛;

𝑋𝑘𝑖 = 𝑐′𝑘𝑊𝑖 for 𝑖 = 1, ..., 𝑛 and 𝑘 = 1, ..., 𝐾;

𝑐′𝑘𝑐𝑘 = 1 for 𝑘 = 1, . . . , 𝐾;

𝑐′𝑘𝑐ℓ = 0 for ℓ ≠ 𝑘.

The constructed variables resulting from solving this prob-

lem,

𝑋𝐾
𝑖 = (𝑋1𝑖 , ...𝑋𝐾𝑖)′

are the first 𝐾 principal components.

Remark 10.2.1 The analytical solution to the principal com-

ponents problem is as follows: The optimal 𝐶𝐾 = [𝑐1, ..., 𝑐𝐾]
are the eigenvectors of Σ𝑛 = 𝔼𝑛[𝑊𝑊 ′] corresponding to the

𝐾 largest eigenvalues 𝜆1, ...,𝜆𝐾 of Σ𝑛 . That is, Σ𝑛𝑐𝑘 = 𝜆𝑘𝑐𝑘
for each 𝑘. Furthermore, the optimal 𝑎 𝑗 is the 𝑗-th column of

𝐶′
𝐾

.

Another interesting feature of principal components is that they

satisfy

𝔼𝑛[𝑋2

𝑘
] = 𝜆𝑘

for 𝑘 = 1, ..., 𝐾 and

𝔼𝑛[𝑋𝑘𝑋ℓ ] = 0

for ℓ ≠ 𝑘. These properties result from the fact that the 𝑐𝑘 are

eigenvectors of Σ𝑛 .

Finding principal components offers one way to produce em-
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Figure 10.2: The left panel shows a linear single layer autoencoder, such as linear principal components. The right

panel shows a three layer nonlinear autoencoder; the middle layers can be used as embeddings.

beddings of raw inputs. Once we have embeddings from any

method, we can look at how similar the raw inputs𝑊𝑘 and𝑊𝑙

are via the cosine similarity of the embeddings:

sim(𝑊𝑘 ,𝑊𝑙) = 𝑋′𝑘𝑋𝑙/(∥𝑋𝑘 ∥∥𝑋𝑙 ∥).

In the context of product embeddings, this approach can be

used, for example, to find products that are similar to a given

product.

The predictive exercise underlying principal components

can be seen as a linear neural network:

𝑊𝑖
𝑑×1

↦−→ 𝐶′𝐾𝑊𝑖 =: 𝐸
𝑘×1

↦−→ 𝐴′𝐸 =: �̂�𝑖
𝑑×1

,

for 𝐴 = [𝑎1, ...𝑎𝑑]. The first step is said to be "encoding" the

information in the input, and the second step is said to be "de-

coding" in the sense of returning the encoded information

to the original space. Therefore, principal components are

embeddings generated by a linear "encoder-decoder" net-

work (an autoencoder, for short). For principal components,

the relationship between the encoder and decoder happens

to be rather simple, in that 𝐴 = 𝐶′
𝐾

(see Remark 10.2.1).

This framing suggests that we can immediately generalize this

approach to nonlinearly generated encoders and decoders that
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2: Google "Borel Isomorphism."

have multiple layers:

𝑊𝑖

𝑔1↦−→ 𝐸1

𝑖 ...
𝑔𝑘↦−→ 𝐸𝑘𝑖

𝑔𝑘+1↦−→ 𝐷𝑘+1

𝑖 ...
𝑔𝑚↦−→ 𝐷𝑚

𝑖 =: �̂�𝑖 ,

where maps 𝑔ℓ ’s are neuron-generating maps. The middle layer

or layers of low dimension, represented by the 𝐸𝑘
𝑖
, are taken to

be encoders. The layers of neurons are mnemonically labelled

as either "E" or "D," depending on whether they are doing

"encoding" or "decoding," though note that there is no strict

formal distinction between these types of layers.

Autoencoders are a way of discovering latent, low-

dimensional structures in a dataset. In particular, a random

data vector 𝑊 ∈ ℝ𝑑
can be said to have low-dimensional

structure if we can find some "well-behaved" functions

e : ℝ𝑑 → ℝ𝑘
and d : ℝ𝑘 → ℝ𝑑

, with 𝑘 ≪ 𝑑, such that

(d(e(𝑊)) ≈𝑊.

In other words, 𝑋 = e(𝑊) is a parsimonious, 𝑘-dimensional

representation of 𝑊 that contains all of the information

necessary to approximately reconstruct the full vector 𝑊 .

Traditionally, the map e(·) is called an encoder, and the

map d(·) is called a decoder function. Given this, a general

formulation of autoencoders is to minimize the average

reconstruction loss,

𝔼𝑛[loss(𝑊, d(e(𝑊))],

over "well-behaved" functions d ∈ D and e ∈ E. These classes

are often linear, as in principal components, or generated

via neural networks.

The qualification of "well-behaved" is important since it is

always possible to write down some (completely wild) one-to-

one function e : ℝ𝑑 → ℝ1
such that e−1e(𝑊) =𝑊 .

2

Remark 10.2.2 (Independent Component Analysis) Princi-

pal component analysis defines "well-behaved" functions as

linear functions whose output (𝑋1, . . . , 𝑋𝑘) = 𝑒(𝑊) has un-

correlated entries, i.e. E[𝑋𝑖𝑋𝑗] = 0. In other words, PCA tries

to find latent embedding vectors (𝑋1, . . . , 𝑋𝑘) that have the

ability to reconstruct the original covariate vectors and are

uncorrelated with each other. One could take a step further

and require that these latent embeddings are independent of
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each other, not just uncorrelated, i.e. 𝑋𝑖 ⊥⊥ 𝑋𝑗 . This leads to

the method called linear Independent Component Analysis

(ICA) [3]. The intuition of ICA when taken to neural network

representations has led to the notion of disentangled repre-

sentations, i.e. embeddings that encode independent latent

dimensions of variation in the data. However, beyond the

linear ICA setting, non-linear neural network based versions

of ICA have more brittle theoretical foundations in the ab-

sence of auxiliary task-related information and task-related

outcome variables [4].

Variational Autoencoders

The encoding and decoding functions so far in our discussion

have been restricted to be deterministic. Implicitly, this assumes

that given the observed high-dimensional variables𝑊 , we can

uniquely identify the low-dimensional variables that contain

all the information in𝑊 . Such unique mapping from observed

factors to latent factors is not always possible.

An important extension of the autoencoder framework is al-

lowing for these mappings to be stochastic. This extension is

inspired by Bayesian probabilistic modelling that views the

embeddings as latent factors and imagines that the data are

drawn by first drawing the latent factors and then drawing

the data samples from some distribution that is dependent on

the latent factors. The variational autoencoder [5] attempts to

reverse engineer this problem and learn the latent factor space

and the posterior distribution of the latent factors conditional on

the observed data using computationally tractable approximate

versions of the maximum likelihood method.

Although arrived at via different reasoning, variational autoen-

coders ultimately look similar to autoencoders, albeit intro-

ducing randomness in the encoding phase. Roughly speaking,

variational autoencoders optimize a loss of the form:

𝔼𝑛[loss(𝑊, d(e(𝑊, 𝑍))] + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(e),

where 𝑍 is an exogenous jointly independent Gaussian random

noise vector and the penalty term forces the encoding function

to be non-deterministic and stems from derivations related to

the objective of learning the posterior distribution of latent

factors. Conditional on an observed 𝑊 , the random variable

e(𝑊, 𝑍) | 𝑊 can be interpreted as a random sample from

the posterior distribution of the latent factors that could have

generated the observed sample 𝑊 . Moreover, the function
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𝑒(𝑊, 𝑍), is typically of the form 𝑒(𝑊, 𝑍) = 𝜇(𝑊) + Σ(𝑊)𝑍,

where the deterministic functions 𝜇(𝑊) and Σ(𝑊) encode

the mean and the covariance of the posterior distribution of

the latent factors. These deterministic functions 𝜇(𝑊),Σ(𝑊)
can be viewed as deterministic embeddings of 𝑊 and can

be used as engineered features in downstream tasks; see e.g.

[6]. Alternatively, one can use only 𝜇(𝑊), which approximates

the posterior mode, as the embeddings. For a more in-depth

introduction to variational autoencoders, see [7].

10.3 From Autoencoders to General

Embeddings

We can generalize from autoencoders by considering other loss

functions where the target outcome in the loss, 𝐴, need not be

𝑊 . Within this context, we can still search for embeddings that

minimize average prediction loss for target 𝐴,

𝔼𝑛[loss(𝐴, f(e(𝑊))],

where the role of f(·) is no longer just to decode (i.e. predict𝑊 )

but rather to predict 𝐴.

For example, in feature engineering from images, 𝐴 could be a

product type or subtype, and𝑊 could be the image. In feature

engineering from text, 𝐴 could be a masked word in a sentence

and 𝑊 the sentence containing this word. These alternative

approaches could be more useful in relation to the final learning

task. For example, to build good hedonic price models, we may

be much more interested in image or text embeddings that best

help to accurately describe the type or subtype of a product

than we are in embeddings that are useful for reconstructing

the entire image or text itself.

Learning general embeddings with a generic target 𝐴 is gener-

ally implemented via neural networks with structure

𝑊𝑖

𝑔1↦−→ 𝐸1

𝑖 ...
𝑔𝑘↦−→ 𝐸𝑘𝑖

𝑔𝑘+1↦−→ 𝐹𝑘+1

𝑖 ...
𝑔𝑚↦−→ 𝐹𝑚𝑖 =: �̂�𝑖 .

In this structure, 𝑔ℓ ’s are neuron-generating maps. The middle

layers 𝐸𝑘
𝑖

are taken to be embedding layers. The 𝐹𝑘
𝑖
’s are pre-

dictive layers which are meant to create good predictions of

auxiliary targets.
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10.4 Text Embeddings

First generation: Word2Vec Embeddings

We first review some basic ideas underlying the Word2Vec

algorithm [8]. One way we could encode words that appear in

a corpus of documents (e.g. product descriptions) into a vector

is to consider a very high-dimensional vector of dimension

𝑑, where 𝑑 is the total number of words in the corpus. Then

the 𝑗-th word in the corpus (e.g. in alphabetical order) can be

represented as:

𝑒 𝑗 = (0, .....0, 1, 0, ....0)′,

with 1 in the j-th position. This encoding has a very high dimen-

sion limiting its usefulness. Furthermore, this representation

does not capture word similarity – e.g., cosine similarity between

two different words 𝑗 and 𝑘 is always zero since 𝑒 𝑗
′𝑒𝑘 = 0.

Instead we aim to represent words by vectors of much lower

dimension, 𝑟, that are able to capture word similarity. We denote

the representation of the 𝑗-th word by 𝑢𝑗 , so the dictionary is

an 𝑟 × 𝑑 matrix

𝜔 = {𝑢1, ..., 𝑢𝑑},

where 𝑟 is the reduced dimensionality of the dictionary. This

dictionary is a linear rotation of the original dictionary 𝐸 =

{𝑒1, ..., 𝑒𝑑}, where

𝜔 = 𝜔𝐸.

Therefore, the problem of finding the rotation 𝜔 is analogous to

the problem of finding principal components, except that our

goal is now to find representations 𝜔 that are able to capture

word similarity. Once we are done, each word 𝑡 𝑗 in a human-

readable dictionary can be represented by a new "word" 𝑢𝑗 . The

goal of Word2Vec is to find an effective representation with the

dimension 𝑟 of the embedding being much smaller than the

total number of words in the corpus, 𝑑. We achieve this goal

by treating 𝜔 as parameters and estimating them so that the

model performs well in some basic natural language processing

tasks. These tasks are typically not related to downstream tasks,

such as predicting hedonic prices or performing causal infer-

ence using text as control features, but are related to language

prediction tasks.

Figure 10.3 shows components of embeddings for several words

produced by a trained Word2Vec map. The numbers presented

in the table are not particularly interpretable in isolation. Each
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womens 0.388 0.031 -0.197 0.180 -0.223 -0.607 0.306 -0.597

mens 0.759 0.372 0.370 0.707 -0.125 0.509 0.106 0.209

clothing 0.149 0.516 -0.028 0.218 -0.851 -0.410 0.386 0.171

shoes 1.324 -0.359 -0.008 -0.552 0.011 0.365 0.228 -0.566

women 0.601 -0.046 -0.099 0.011 -0.097 -0.605 0.256 -0.551

girls 0.417 -0.005 -0.409 -0.531 -1.319 -0.035 -0.941 -0.361

men 0.778 0.407 0.426 0.534 -0.056 0.518 0.108 0.245

boys 0.897 -0.017 -0.002 -0.182 -1.313 0.449 -0.828 0.521

accessories 0.868 -0.378 -1.248 1.541 0.324 0.283 -0.491 0.081

socks 0.276 0.354 0.186 0.301 -0.643 -0.022 0.321 0.241

luggage 0.797 1.750 -2.307 -0.560 0.031 0.921 0.417 0.313

dress 0.282 0.233 0.043 0.175 -0.501 -0.381 0.298 -0.026

baby 0.346 -0.550 -1.136 -0.044 -2.005 0.690 -1.092 0.010

jewelry -0.316 0.348 -0.309 0.879 -0.766 1.124 -0.080 -2.039

black 0.427 0.030 -0.019 0.224 -0.162 -0.325 0.170 -0.173

boots 1.009 -0.304 0.032 -0.334 -0.096 0.111 0.118 -0.519

shirts 0.444 0.453 0.394 0.518 -0.531 0.100 0.146 0.204

shirt 0.329 0.422 0.227 0.456 -0.700 0.067 0.106 0.234

underwear 0.231 0.491 0.226 0.202 -0.774 0.005 0.229 0.310

Example of Word2Vec Features

Figure 10.3: Examples of words con-

verted to numerical features via

Word2Vec. Compare embeddings

for words "shirt" and "shirts" (high-

lighted in red) and for "luggage"

and "dress" (highlighted in blue).

The embeddings for shirt and shirts

are much more similar than the em-

beddings for luggage and dress.

3: Why not? We can try it and see

if it works.

column represents a "trait" and the cell entry represents the

loading of the word in the row in that trait. The numbers are

more useful in comparison with each other across different rows

which allows us to understand word similarity. For example,

we can see that the very similar words "shirt" and "shirts"

have very similar embeddings while the embeddings for the

seemingly relatively different words "luggage" and "dress" are

quite dissimilar.

In our context, we can think of each word appearing in a datum

(e.g. a product description) as a random variable 𝑇 and denote

its corresponding embedding representation by𝑈 .

One of the ways to train the word embeddings is to predict

the middle word from the words that surround it in word

sentences.

Given a subsentence 𝑠 of 𝐾 + 1 words, we have a central word

𝑇𝑐,𝑠 whose identity we would like to predict. As predictors,

we have the context words {𝑇𝑜,𝑠} that surround the central

word 𝑇𝑐,𝑠 . One approach for forming the prediction starts by

collapsing the embeddings for context words by a sum,
3

�̄�𝑠 =
1

𝐾

∑
𝑜

𝑈𝑜,𝑠 ,

where𝑈𝑜,𝑠 is the element of 𝜔 corresponding to the word 𝑇𝑜,𝑠 .

This step imposes a drastically simplifying assumption that the

context words are exchangeable – i.e. the position of each word

is not important.

The probability of the middle word 𝑇𝑐,𝑠 being equal to 𝑡 is
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modeled via the multinomial logit function:

𝑝𝑠(𝑡;𝜋, 𝜔) := 𝑃
(
𝑇𝑐,𝑠 = 𝑡 | {𝑇𝑜,𝑠},𝜋, 𝜔

)
=

exp(𝜋′𝑡 �̄�𝑠(𝜔))∑
𝑡 exp(𝜋′

𝑡
�̄�𝑠(𝜔))

,

where 𝜋 = (𝜋1, ...,𝜋𝑑) is an 𝑚 × 𝑑 matrix of parameter vectors

defining the choice probabilities. The model constrains the

choice probabilities 𝜋 to be 𝜔, and estimates 𝜔 using the quasi-

maximum likelihood method:

max

𝜔=𝜋

∑
𝑠∈S

log 𝑝𝑠(𝑇𝑖 ,𝑠 ;𝜋, 𝜔),

where we sum the log-probabilities over many examples Sof

subsentences 𝑠. Once we are done training, we can generate the

embedding for the title or description of product 𝑖, containing

the embedded words {𝑈 𝑗 ,𝑖}𝐽𝑗=1
by simply averaging them:

𝑊𝑖 =
1

𝐽

𝐽∑
𝑗=1

𝑈 𝑗 ,𝑖 . (10.4.1)

Remark 10.4.1 In summary, the Word2Vec algorithm trans-

forms text into a vector of numbers that can be used to com-

pactly represent words. The algorithm trains a neural network

in a supervised manner such that contextual information is

used to predict another part of the text.

For example, let’s say that the title description of the item

is: "Hiigoo Fashion Women’s Multi-pocket Cotton Canvas

Handbags Shoulder Bags Totes Purses." The model will be

trained using many 𝑛-word subsentence examples, such

that the center word is predicted from the rest. If we just

use 𝑛 = 3 subsentence examples, then we train the model

using the following examples: (Hiigoo,Women’s) → Fash-

ion, (Fashion,Multi-pocket)→Women’s, (Women’s,Cotton)

→Multi-pocket, and so on.

How do we judge whether the text embedding is successful

or not? In the hedonic price context, we can check whether

Word2Vec features improve the quality of prediction of the price

by the hedonic model. We can also check if similar words 𝑇𝑘
and 𝑇𝑙 have similar embeddings. We can measure the similarity

through cosine similarity:

sim(𝑇𝑘 , 𝑇𝑙) = 𝑈′𝑘𝑈𝑙/(∥𝑈𝑘 ∥∥𝑈𝑙 ∥) ∈ [−1, 1].



10 Feature Engineering for Causal and Predictive Inference 279

4: This example also shows us how

word embeddings very easily en-

code and propagate biases that ex-

ist in document corpora that are

typically used in machine learning;

a realization that has been high-

lighted by several recent works [9].

One should always be cognizant

of such inherent biases in trained

embeddings. Recent works in ma-

chine learning (e.g. [9]) provide au-

tomated approaches that partially

correct for these biases, though not

completely removing the problem

[10].

The more similar the words are, according to our human no-

tion of similarity, the higher the value our formal measure

of similarity should take. For example, the following are the

two words that are most similar to "tie" under the similarity

measure: "necktie" and "bowtie." The embeddings also induces

an interesting vector space on the set of words, which seems

to encode analogues well. For example, the word "briefcase" is

very cosine-similar to the artificial latent word
4

Artificial word = Word2Vec(men
′
s)

+Word2Vec(handbag) −Word2Vec(women
′
s).

This similarity between a real word and our constructed latent

word gives some justification for the "averaging" of embeddings

to summarize whole sentences or descriptions.

Word2vec embeddings were among the first generation of early

successful embedding algorithms. These algorithms have been

improved by the next generation of NLP algorithms, such as

ELMo and BERT, which are discussed next.

Second Generation: Sequence Models

A major advance in language modeling has been to represent

text as a sequence using recurrent (autoregressive) models.

Among various benefits, representing text with an autogres-

sive structure allows for better capturing the context around

words.

Of note is the Embeddings from Language Models (ELMo)

algorithm [11], which uses the idea of the Shannon game where

we aim to guess a word in a sentence, 𝑚, consisting of 𝑛 total

words. Specifically, we consider the problem of predicting word

𝑘 + 1 using the preceding 𝑘 words via

𝑝
𝑓

𝑘,𝑚
(𝑡) = 𝑃(𝑇𝑘+1,𝑚 = 𝑡 | 𝑇1,𝑚 , ..., 𝑇𝑘,𝑚 ;𝜃)

and similarly consider the reverse prediction via

𝑝𝑏
𝑘,𝑚
(𝑡) = 𝑃(𝑇𝑘−1,𝑚 = 𝑡 | 𝑇𝑘,𝑚 , ...𝑇𝑛,𝑚 ;𝜃),

where 𝜃 is a parameter vector. ELMo then uses recurrent neural

networks (RNNs) to model these probabilities.

On Recurrent Neural Networks A RNN is a particular

architecture for sequence input and output where we use
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neurons from the previous prediction to make the current

prediction.RNNs are essentially the neural network version

of linear autoregressive models, such as ARIMA models,

which go back to the early work of statisticians George

Box and Gwilym Jenkins [12, 13] and have also been used

in economics to model volatility of financial assets in the

GARCH model of economist Tim Bollerslev [14].

In its simplest form, a RNN parses inputs in a serial manner

𝑇1, . . . , 𝑇𝑡 , . . . , 𝑇𝑘 where each step 𝑡 produces a state vector

𝑆𝑡 = 𝜎(𝐴𝑇𝑡 +𝐵𝑆𝑡−1+ 𝑐) that is a non-linear function (a set of

neurons) of the current input and the previous state vector.

That is, 𝜎 is an activation function as presented in Section 8.3

applied elementwise to each coordinate. Moreover, a RNN

produces an output prediction vector 𝑦𝑡 = 𝜎(𝐷𝑆𝑡 + 𝑒) that

is a non-linear function (a set of neurons) of the current

state. The parameters 𝐴, 𝐵, 𝑐, 𝐷, 𝑒 of all these neurons are

the same (shared) across steps.

Parameters are estimated by maximizing parameterized

approximate versions of the log-likelihoods of the observed

data (aka quasi-likelihoods), typically referred to as quasi-

maximum log-likelihood methods, where the forward and

backward log quasi-likelihoods are added together.

Specifically, ELMo uses a particular form of recursive neural net-

work called Long Short-Term Memory (LSTM) network. LSTMs

improve upon the numerical stability of RNNs by allowing for

the "state" to pass through the current step as-is, without any

non-linearity applied. Allowing the state to pass through steps

without alteration helps in propagating information across dis-

tant steps and thus better accommodates long-term memory.

To give a simple example, suppose we wanted model word

choice with a multinomial logit function, as in the previous

subsection, but wanted to better grasp the positional context

of the individual words. Rather than start by collapsing the

embeddings for context words surrounding a target central

word via a sum, we could instead keep track of word order and

assign individual parameters to each context. For example, we

could model the forward predicted probability of word 𝑘 in

sentence 𝑚 as

𝑃(𝑇𝑘,𝑚 = 𝑡 | {𝑇𝑗 ,𝑚}𝑘−1

𝑗=1
,𝜋) = 𝑒

∑𝑘−1

𝑗=1
𝜋′
𝑡 , 𝑗
𝑈𝑗 ,𝑚(𝜔)∑

𝑡 𝑒
∑𝑘−1

𝑗=1
𝜋′
𝑡 , 𝑗
𝑈𝑗 ,𝑚(𝜔)

,
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Figure 10.4: ELMo Architecture.

ELMo network for a string of 4

words, with 𝐿 = 2 hidden layers.

Here, the softmax layer (multino-

mial logit) is a single function map-

ping each input in ℝ𝑑
to a probabil-

ity distribution.

and similarly model the reverse prediction problem where we

recall that 𝑈 𝑗 ,𝑚(𝜔) is the embedding corresponding to word

𝑗 in sentence 𝑚. ELMo uses a more sophisticated (and more

parsimonious) recursive nonlinear regression model (specifi-

cally a recurrent neural network) to build these probabilities.

We illustrate a simple ELMo structure in Figure 10.4.

The basic structure of ELMo.

Given a sentence 𝑚 of 𝑛 words,

1. Words are mapped to context-free embeddings in

ℝ𝑑
.

2. A network is trained to predict each word 𝑇𝑘,𝑚 of

a string given (a) words (𝑇1,𝑚 , . . . , 𝑇𝑘−1,𝑚) (forward

prediction) and (b) words (𝑇𝑘+1,𝑚 , . . . , 𝑇𝑛,𝑚) (back-

ward prediction). The objective is to maximize the

average over the sum of the log-likelihoods of the

2𝑛 − 2 words being predicted, where the average is

taken over all sentences.

3. The embedding of word 𝑇𝑘,𝑚 is given by a weighted

average of outputs of certain hidden neurons corre-

sponding to this word’s entire context. Importantly, a

subset of the parameters is coupled across the forward

and backward prediction problems (2a) and (2b). In

particular, the first layer that goes out of the context-

free embedding and the final ("softmax") layer that

produces the probabilistic predictions is the same for

the two prediction objectives (2a) and (2b)

A softmax layer assigns probabil-

ities to each class in a multi-class

problem. It is a multi-class general-

ization of logistic regression that as-

sumes mutually exclusive classes.

. Thus the

inputs to this layer, which represent the forward and
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backward context, are constrained to lie in "the same

space."

Training

In Figure 10.4, the output probability distribution 𝑝
𝑓

𝑘
is taken as

a prediction of 𝑇𝑘+1,𝑚 using words (𝑇1,𝑚 , . . . , 𝑇𝑘,𝑚). Similarly, 𝑝𝑏
𝑘

is taken as a prediction of 𝑇𝑘−1,𝑚 using words (𝑇𝑘,𝑚 , . . . , 𝑇𝑛,𝑚).
The parameters of the network, 𝜃, are obtained by maximizing

the quasi-log-likelihood:

max

𝜃

∑
𝑚∈M

(
𝑛−1∑
𝑘=1

log 𝑝
𝑓

𝑘,𝑚
(𝑇𝑘+1,𝑚 ;𝜃) +

𝑛∑
𝑘=2

log 𝑝𝑏
𝑘,𝑚
(𝑇𝑘−1,𝑚 ;𝜃)

)
,

where M is a collection of sentences. In our running pricing

example, Mwould be the collection of titles and product de-

scriptions taken from product web pages.

Producing embeddings

To produce embeddings from the trained network, each word

𝑡𝑘 in a sentence𝑚 = (𝑡1, ..., 𝑡𝑛) is mapped to a weighted average

of the outputs of the hidden neurons indexed by 𝑘:

𝑡𝑘 ↦→ 𝑤𝑘 :=

𝐿∑
𝑖=1

(𝛾𝑖𝑤 𝑓

𝑘𝑖
+ �̄�𝑖𝑤

𝑏
𝑘𝑖
).

The embedding for the sentence (or an entire product descrip-

tion in our example) is produced by summing the embeddings

for each individual word. The weights 𝛾 and �̄� can be tuned by

the neural network performing the final task. In principle, the

whole network could be plugged in to the network performing

the final task and allowed to update. However, the ELMo archi-

tecture and methodology is more inline with being used as a

feature extractor, with only the final linear layer being trained

towards the target task (in sharp contrast to the BERT model

that we outline next; see e.g. [15]).

Third generation: Transformers

A subsequent major advance in language modeling has been

the development and use of the transformer architecture. Going

beyond backwards and forwards sequences, transformers use a
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mechanism termed "self-attention" [16] in order to model the

importance of different parts of the text in understanding any

one other part. Like RNNs, this self-attention mechanism allows

for understanding context; but unlike RNNs, it allows the model

to better focus on potentially far away parts of the text that may

be more relevant than nearby words for understanding context.

For example, looking beyond the local neighborhood of say the

word "it" allows understanding that "it" in one sentence refers

to a particular word from a previous sentence.

An early and prominent example of transformer-based lan-

guage models is Bidirectional Encoder Representations from

Transformers (BERT) [17].

Unlike the language model in ELMo which predicts the next

word from previous and subsequent words, the BERT model is

trained on two self-supervised tasks simultaneously:

▶ Mask Language Model: Randomly mask a certain per-

centage of the words in a sentence and predict the masked

words.

▶ Next Sentence Prediction: Given a pair of sentences, pre-

dict whether one sentence precedes another.

The basic structure of BERT.

1. Each word in the input sentence is broken into

subwords (tokenized) and each piece is called a

"token." Each token is encoded using a context-free

embedding called WordPiece. A special token [cls] is
added to the beginning of the sequence. x% of the

tokens representing individual words are replaced

by [mask].

2. For each token, its input representation consists

of i) its token embedding from (1), ii) its position

embedding indicating the position of the token in the

sentence, and iii) its segment embedding indicating

whether it belongs to sentence A or B.

3. The input representation of tokens in the sequence

is fed into the main model architecture: L layers of

Transformer-Encoder blocks. Each block consists

of a "multi-head attention layer" (described below),

followed by a feed forward layer.
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4. The output representation of the mask token [mask]
is used to predict the masked word via a softmax

layer, and the output representation of the special

[cls] token is used for Next Sentence Prediction. The

loss function is a combination of the two losses.

We next focus in detail on the main structure used to construct

the network in (3), especially the "multi-head attention" layer.

Computing the Attention

We begin with the context-free embeddings (𝑥1, 𝑥2, . . . , 𝑥𝑛), for

𝑛 words, with each 𝑥𝑘 ∈ ℝ𝑑
. Let 𝑋 denote the matrix whose

𝑘-th row is the embedding 𝑥𝑘 . An attention module transforms

this matrix of 𝑛 embeddings, 𝑋, into another matrix of 𝑛 em-

beddings, where each row 𝑘 of the new matrix contains an

embedding of the "information" in a "neighborhood" around

token 𝑘. The notion of "neighborhood" and the notion of "infor-

mation" are all parameterized by neural network parameters of

the attention module and learnable in a data-driven manner as

we describe below.

The goal of an attention module is to create weighted neigh-

borhoods ( attention regions) of seemingly distant tokens in a

data-driven manner and then create embeddings that corre-

spond to linear combinations of the embeddings of the tokens

in these attention regions. One way to achieve this goal is to

decouple the "neighborhood" representation of a token with the

representation of each "meaning" or "value." Thus we will trans-

form each token embedding 𝑥𝑘 into a key embedding 𝜅𝑘 := 𝑥′
𝑘
𝜔𝐾

,

where 𝜔𝐾 ∈ ℝ𝑑×𝑑𝑘
is a learnable matrix parameter, and a value

embedding 𝑣𝑘 := 𝑥′
𝑘
𝜔𝑉 , where 𝜔𝑉 ∈ ℝ𝑑×𝑑𝑣

is a learnable matrix

parameter. Then a neighborhood can be encoded by a query
vector 𝑞 that lies in the same space as the space of keys and

such that the weighted neighborhood is defined via a similarity

metric between the vector 𝑞 and the key vectors. Attention

mechanisms used in Transformers use a scaled inner product

as the similarity, i.e. 𝑠𝑘 := 𝑞′𝜅𝑘/
√
𝑑𝑘 . Then this similarity is

passed through a soft-max function 𝜎(·) to map it to a selection

probability in [0, 1]. Finally, as we alluded to in the beginning

the embedding of the neighborhood that corresponds to this query

𝑞 is simply the weighted average of the value embeddings of

the tokens, i.e. 𝑎 :=
∑𝑛
𝑘=1

𝜎(𝑠𝑘)𝑣𝑘 .
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Suppose now that we had 𝑛 neighborhood queries 𝑞1, . . . , 𝑞𝑛 ,

then we could create𝑛 such neighborhood embeddings 𝑎1, . . . , 𝑎𝑛 .

Transformers consider "self-attention" queries, where each of

the 𝑛 queries 𝑞𝑘 corresponds to a query embedding associated

with a particular token and is yet another linear embedding

of the form 𝑞𝑘 = 𝑥′
𝑘
𝜔𝑄

, where 𝜔𝑄 ∈ ℝ𝑑×𝑑𝑘
is a learnable ma-

trix parameter. Then for each such query we can calculate the

corresponding neighborhood embedding 𝑎𝑘 .

Overall this transformation takes as input a matrix 𝑋 ∈ ℝ𝑛×𝑑
,

where each row corresponds to an original token embedding

and transforms it into a matrix𝐴, where each row 𝑘 corresponds

to the neighborhood embedding associated with query 𝑞𝑘 ,

which in turn is associated with token 𝑥𝑘 . We can write this

calculation in matrix form: Let𝑄 = 𝑋𝜔𝑄
denote the matrix with

rows corresponding to query embeddings, let 𝐾 = 𝑋𝜔𝐾
denote

the matrix with rows corresponding to key embeddings, and let

𝑉 = 𝑋𝜔𝑉 denote the matrix with rows corresponding to value

embeddings. Then the attention embeddings (or neighborhood

embeddings) can be written in matrix form as

𝐴 = Attention(𝑄, 𝐾,𝑉) := 𝜎
(
𝑄𝐾⊤/

√
𝑑𝑘

)
𝑉.

A Multi-Head Attention mapping, which is the building block of

the BERT model, builds many such attention transformations,

for different matrix parameters {𝜔𝑄

𝑗
, 𝜔𝐾

𝑗
, 𝜔𝑉

𝑗
}ℎ
𝑗=1

, calculates

the corresponding attention embedding matrices 𝐴 𝑗 ∈ ℝ𝑛×𝑑𝑣
,

then concatenates the results in a big embedding matrix 𝐴 =

Concatenate(𝐴1, . . . , 𝐴ℎ) ∈ ℝ𝑛×ℎ·𝑑𝑣
and applies a linear projec-

tion transformation 𝐴𝜔𝑂
, where 𝜔𝑂 ∈ ℝℎ·𝑑𝑣×𝑑𝑜

, to produce the

final output encoding. Thus, we can define the basic Multi-Head

Attention transformation:

𝑋 ↦−→ MultiHead(𝑋) := Concatenate(Head1, . . . ,Headℎ)𝜔𝑂 ,

Head𝑗 = Attention(𝑋𝜔𝑄

𝑗
, 𝑋𝜔𝐾

𝑗 , 𝑋𝜔𝑉𝑗 ),

Each Transformer building block in BERT consists of a series of

several repetitions of multi-head attention encodings, followed

by a fully connected neural network (applied to each of the 𝑛

output encodings separately). The input 𝑛 encodings of each

repetition is the output of the previous repetition.
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Figure 10.5: BERT Architecture

Generating product embeddings

Depending on specific tasks and resources, Devlin et al. [17]

suggested to construct BERT embeddings in various ways: Tuning only a final linear layer on

top of a pre-trained embedding net-

work and freezing all other parame-

ters of the embedding is referred to

in the machine learning literature

as linear probing. If one allows for

the parameters of the embedding it-

self to be updated when optimizing

for a particular downstream pre-

diction task, then this practice is re-

ferred to as fine-tuning. [18] presents

a way of blending the two modes

by first training the final linear layer

and then un-freezing the remain-

ing parameters of the embedding

and continuing to train. This blend-

ing seems to produce substantial

gains in generalization ability and

accuracy of the resulting predictive

model.

▶ Use the last layer, second-to-last layer, or concatenate the

last 4 layers of the encoder outputs from the pre-trained

BERT model.

▶ Fine tune the whole BERT model using the downstream

task.

▶ Train the BERT language model from scratch on new

data.

In the hedonic price example discussed in Section 10.6, the

feature-based approach was chosen. Specifically, the second-

to-last layer from a pre-trained BERT model was extracted as

embeddings to be used as covariates in the final price prediction

task. Each product’s text embedding is the average of the

embeddings of each word/token from the input text field.

Beyond ELMo and BERT

ELMo and BERT are both important breakthroughs in NLP. The

former marked the first contextual word embedding trained

from a deep language model, and the latter was the first con-

textual word embedding using Transformer architecture. The

biggest difference lies in the choice of fundamental architec-

tures: ELMo is based on a Recurrent Neural Network (RNN),

while BERT is based on the Transformer architecture. RNNs

can struggle to capture long-term dependencies, whereas the
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Transformer architecture is more efficient at capturing long-

range dependencies in the text. Furthermore, ELMo creates

context by using the left-to-right and right-to-left language

model representations, while BERT models the entire context

simultaneously.

Large language models are continuously evolving and becoming

ever more powerful and sophisticated in their understanding

of language and meaning. The latest generation of large lan-

guage models lie in the Generative Pre-trained Transformer

(GPT) family [19–21]. While BERT can be understood to use

the transformer architecture as an encoder, GPT models use the

transformer architecture in a decoder for a generative model

of the probabilities in an autoregressive model reminiscent of

the one used in ELMo. GPT models combine these modeling

ideas from their successful precursors with pre-training on a

large corpus of text. With the rapid development in the space of

large language and multi-modal models, the latest and greatest

models will certainly advance beyond the descriptions in this

book, but the principles of using these models to understand

complex data and use it to support robust causal inference will

likely remain the same.

Revisiting the Price Elasticity for Toy Cars

In Chapter 0, Chapter 4, and Chapter 9, we saw how using

increasingly flexible learning methods (OLS, LASSO, nonlin-

ear regression) to control for confounding in the price-sales

data for toy cars lead to increasingly more negative estimates

and confidence intervals for elasticity. However, the models

discussed in those chapters only used the categorical (brand,

subcategory) and numeric (physical dimensions) features of the

products. However, we actually observe much richer data: all

the text on the product page, including the product description.

Text embeddings are a great way to leverage these data and

include them in a causal analysis of price elasticity. We can take

BERT and plug it into neural networks, one to predict price and

one for sales: we take the text as input, pass it through BERT

initialized at the pre-trained model, add an additional dense

layer, and train the whole network. Doing this over 5 folds, we

obtain a cross-validated 𝑅2
of 0.55 for predicting 𝑌 and 0.027

for predicting 𝐷, improving upon the best nonlinear methods

considered in the Chapter 9. Applying DML with these new

predictors leads to a point estimate for elasticity of -0.174 and

95% confidence interval of [-0.214, -0.135]. The further increase

in the magnitude of the estimated coefficient suggests we are
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better controlling for observed confounders by including the

text data as the more negative elasticity estimates align more

closely with our theoretical prediction.

At the end of the chapter we provide a notebook wherein we

repeat the exercise of constructing neural nets using BERT for

predicting𝑌 and𝐷 and plug them into DML. The results in that

notebook are different than those reported here (and previously)

as we use a publicly available dataset in that notebook as

opposed to the proprietary data underlying the numbers we

report here. The biggest difference between the

public and private data is that the

public data does not have the same

range of numeric features as in the

private data.10.5 Image Embeddings

One of the most successful deep learning models for image

classification was the ResNet50 model developed by He et al.

[22]. At the time of the release, the paper achieved the best

results in image classification, in particular for the ImageNet

and COCO datasets.

The central idea of the paper is to exploit "partial linearity": tra-

ditional nonlinearly-generated neurons are combined (or added

together) with the previous layer of neurons. More specifically,

ResNet50 takes a standard feed-forward convolutional neural

network and adds skip connections that bypass two (or one or

several) convolutional layers at a time. Each skipping step gen-

erates a residual block in which the convolution layers predict

a residual.

Formally, each 𝑘-th residual block is a neural network map-

ping

𝑣 ↦−→ (𝑣, 𝜎0

𝑘
(𝜔0

𝑘
𝑣)) ↦−→ (𝑣, 𝜎1

𝑘
◦ 𝜔1

𝑘
𝜎0

𝑘
(𝜔𝑘𝑣))

↦−→ 𝑣 + 𝜎1

𝑘
◦ 𝜔1

𝑘
𝜎0

𝑘
(𝜔0

𝑘
𝑣),

where 𝜔’s are matrix-valued parameters or "weights." This

structure can be seen as a special case of general neural network

architecture, designed so that it is easy to learn the identity

sub-maps (entering the composition of the entire network).

Putting together many blocks like these sequentially results in

the overall architecture depicted in Figure 10.6.

The deep feed-forward convolutional networks developed in

prior work suffered from major optimization problems – once

the depth was sufficiently high, additional layers often resulted

in much higher validation and training error. It was argued that

this phenomenon was a result of "vanishing gradients," where
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Figure 10.6: The ResNet50 operates on numerical 3-dimensional arrays representing images. It first does

some pre-processing by applying convolutional and pooling filters, then it applies many L-residual block

mappings, producing the arrays shown in green. The penultimate layer produces a high-dimensional

vector 𝐼, the image embedding, which is then used to predict the image type.

in a network of 𝑛 layers, computation by backpropogation us-

ing the chain rule involves multiplying 𝑛 small numbers (if

using traditional activation functions, recent popular activation

functions such as RELU do not induce such a small derivative),

causing the gradient to "vanish" for early layers and posing a

computational challenge. The residual network architecture ad-

dresses this by using the residual block architecture: including

the residual directly via skip connections reduces the mini-

mizing impact of the activation function. The creation of this

architecture has allowed for high quality training even for very

deep networks.

In many applications, we will not be interested in the final

predictions from the image classification task. Rather, we will

be interested in using lower levels of the network, such as the

last hidden layer, as our image embeddings to be used as inputs

into the modeling task of interest. For example, in the pricing

example discussed next in Section 10.6, we feed image data

from product webpages into a publicly trained ResNet50 model

and extract the final layer to generate the image embeddings.

10.6 Application: Hedonic Prices

Here we apply our new knowledge of embeddings to review

an empirical application considered in Bajari et al. [23]. The
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5: It can be given structural or

causal interpretation using the so-

called hedonic price models from

economics.

application is a prediction problem which deals with hedonic

price models. An empirical hedonic model is a predictive model

for price given a traded object’s characteristics.
5

Here, the goal is

to predict the price of apparel bought and sold on Amazon.com

using the product’s image and description:

𝑃𝑖𝑡 = 𝐻𝑖𝑡 + 𝜖𝑖𝑡 = ℎ𝑡(𝑋𝑖𝑡) + 𝜖𝑖𝑡 , E[𝜖𝑖𝑡 | 𝑋𝑖𝑡] = 0, (10.6.1)

where 𝑃𝑖𝑡 is the price of product 𝑖 at time 𝑡 (in months), 𝑋𝑖𝑡
are the product features, and the price function 𝑥 ↦→ ℎ𝑡(𝑥)
can change from period to period, reflecting the fact that prod-

uct attributes/features may be valued differently in different

periods. [23] use the data from time period 𝑡 to estimate the

function ℎ𝑡 using deep neural network methods. The results are

contrasted with classical linear regression methods as well as

other modern regression methods, such as the random forest.

One of the main uses of hedonic prices is construction of cost of

living indices. The use of hedonic prices allows us to "price" the

product attributes as well as entire "baskets of attributes" that

consumers buy. Then, given a reference "basket of attributes,"

one can look at the hedonic cost of a basket today compared

to its cost in an earlier reference period to determine whether

the cost increased or decreased. These types of calculations

underlie the construction of commonly used consumer price

indices (measuring inflation rates), at least for categories such

as apparel products.

A key component of the approach taken in [23] is the use of

product features 𝑋𝑖𝑡 generated as neural network embeddings

of text and image information about the product. Specifically,

𝑋𝑖𝑡 consists of text embedding features 𝑊𝑖𝑡 , constructed by

converting the title and product description available on a

product’s web page into numeric vectors, and image embedding

features 𝐼𝑖𝑡 constructed by converting the product image into

numeric vectors:

𝑋𝑖𝑡 = (𝑊 ′𝑖𝑡 , 𝐼
′
𝑖𝑡)
′. (10.6.2)

These text and image embedding features are generated respec-

tively by applying the BERT and ResNet50 mappings.

The model takes high-dimensional text and image features

as inputs, converts them into a lower dimensional vector of

value embeddings using deep learning methods, and outputs

simultaneous predictions of price in all time periods.
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Figure 10.7: The structure of the predictive model in Bajari et al. [23]. The input consists of images and

unstructured text data. The first step of the process creates numerical embeddings 𝐼 and𝑊 for images and

text data via deep learning methods, specifically ResNet50 and BERT. The second step of the process takes

as its input 𝑋 = (𝐼 ,𝑊) and creates predictions for hedonic prices 𝐻𝑡(𝑋) using deep learning methods

with a multi-task structure. The models of the first step are trained on tasks unrelated to predicting prices

(e.g., image classification or word prediction), where embeddings are extracted as hidden layers of the

neural networks. The models of the second step are trained by price prediction tasks. The multitask price

prediction network creates an intermediate lower dimensional embedding 𝑉 = 𝑉(𝑋), called a value

embedding, and then predicts the final prices in all time periods {𝐻𝑡(𝑉), 𝑡 = 1, ..., 𝑇}. Some variations

of the method include fine-tuning the embeddings produced by the first step to perform well for price

prediction tasks (i.e. optimizing the embedding parameters so as to minimize price prediction loss).

6: As a practical matter, most of the

product attributes in [23] are time-

invariant - that is, 𝑍𝑖𝑡 = 𝑍𝑖 has no

time variation. We state the model

in more generality here.

The general structure of the model takes the form

𝑍𝑖𝑡 =

[
Text𝑖𝑡

Image𝑖𝑡

]
𝑒↦−→ 𝑋𝑖𝑡

𝑔1↦−→ 𝐸
(1)
𝑖𝑡
...

𝑔𝑚↦−→ 𝐸
(𝑚)
𝑖𝑡

=: 𝑉𝑖𝑡
𝜃′↦−→ {𝐻𝑖𝑡}𝑇𝑡=1

:= {𝛽′𝑡𝑉𝑖𝑡}𝑇𝑡=1
.

Here𝑍𝑖𝑡 ,
6

the original input which lies in a very high-dimensional

space, is nonlinearly mapped into an embedding vector 𝑋𝑖𝑡
which is of moderately high dimension (up to 5120 dimensions

in this example). 𝑋𝑖𝑡 is then further nonlinearly mapped into a

lower dimension vector 𝐸
(1)
𝑖𝑡

. This process is repeated to produce

the final hidden layer,𝑉𝑖𝑡 = 𝐸
(𝑚)
𝑖𝑡

, which is then linearly mapped

to the final output that consists of hedonic price 𝐻𝑖𝑡 for product

𝑖 in all time periods 𝑡 = 1, ..., 𝑇.

The last hidden layer 𝑉 = 𝐸(𝑚) is called the value embedding in

this context – the value embedding represents latent attributes

to which dollar values are attached. The embeddings produced

in this example are moderately high-dimensional (up to 512
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dimensions) summaries of the product, derived from the most

common attributes that directly determine the price of the pre-

dicted hedonic price of the product. Note that the embeddings

𝑉 in this example do not depend on time and so may be thought

of as representing intrinsic, potentially valuable attributes of

the product. However, the predicted price does depend on

time 𝑡 via the coefficient 𝛽𝑡 , reflecting the fact that the different

intrinsic attributes are valued differently across time.

The network mapping above comprises a deep neural network

with neurons 𝐸𝑘,ℓ of the form

𝑔ℓ : 𝑣 ↦−→ {𝐸𝑘,ℓ (𝑣)}𝐾ℓ𝑘=1
:= {𝜎𝑘,ℓ (𝑣′𝛼𝑘,ℓ )}𝐾ℓ𝑘=1

. (10.6.3)

Here 𝜎𝑘,ℓ is the activation function that can vary with the layer

ℓ and can vary with 𝑘, from one neuron to another.

The model is trained by minimizing the loss function

min

𝜂∈N,{𝛽𝑡 }𝑇𝑡=1

∑
𝑡

∑
𝑖

(𝑃𝑐𝑖𝑡 − 𝛽′𝑡𝑉𝑖𝑡(𝜂))2𝑄𝑖𝑡 , (10.6.4)

where 𝜂 denotes all of the parameters of the mapping

𝑋𝑖𝑡 ↦→ 𝑉𝑖𝑡(𝜂)

and N represents the parameter space. Here, we are using a

weighted loss where we weight by the quantity of product 𝑖

sold at time 𝑡, 𝑄𝑖𝑡 .

Next we review how the initial embedding is generated. A

multilingual BERT model is used to convert text information and

the ResNet50 model is used to convert images into a subvector of

𝐸
(1)
𝑖𝑡

. These models are trained on auxiliary prediction tasks with

auxiliary outputs 𝐴𝑇𝑖𝑡 for text and 𝐴𝐼𝑖𝑡 for images. Introducing

these auxiliary tasks can be illustrated diagrammatically as

𝑋𝑖𝑡 =

[
Text𝑖𝑡

Image𝑖𝑡

]
𝑒↦−→

𝐴𝑇𝑖𝑡x
𝑊𝑖

𝐼𝑖y
𝐴𝐼𝑖𝑡

=: 𝐸
(1)
𝑖𝑡
... ↦−→ 𝐸

(𝑚)
𝑖𝑡

:= 𝑉𝑖𝑡 ↦−→ {�̂�∗𝑖𝑡}
𝑇
𝑡=1
,

(10.6.5)

The embeddings 𝑊𝑖𝑡 and 𝑋𝑖𝑡 forming 𝐸
(1)
𝑖𝑡

are obtained by

mapping them into auxiliary outputs𝐴𝑇 𝑗 and𝐴𝐼 𝑗 that are scored

on natural language processing tasks and image classification

tasks respectively. This step uses data that are not related to

prices. The parameters of the mapping generating 𝐸
(1)
𝑖𝑡

are

considered as fixed in our analysis.
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The price prediction network we employ in this example con-

tains three hidden layers, with the last hidden layer containing

400 neurons. The network is trained on a large data set with

more than 10 million observations. A large enough data set is

crucial for training successful neural networks.

The accuracy of prediction as measured by the 𝑅2
on the

test sample is about 90%. In contrast, random forests using

embeddings deliver an 𝑅2
in the ballpark of 80%; the linear

model using least squares applied to embeddings delivers an 𝑅2

in the ballpark of 70% and the linear model using only simple

catalog features (without embeddings) delivers an 𝑅2
lower

than 40%.

Thus, embeddings offer a means of making use of complex data

for predictions and, at least for large data sets, neural nets can

offer predictive improvements relative to competing machine

learning approaches.

10.7 Notes

[24] develop "DoubleMLDeep" which explicitly explores deep

neural network architectures for incorporating text and image

data as confounding variables in the DML framework.

10.8 Notebooks

Notebook 10.8.1 (Autoencoders) Python Autoencoders Note-

book and R Autoencoders Notebook provide an introduction

to autoencoders, starting from classical principal components.

Notebook 10.8.2 (Embeddings via BERT) Python Toys and

Prices Notebook provides an introduction to text embeddings

via BERT and provides an application to predicting demand

for toys.

10.9 Exercises

Exercise 10.9.1 (Autoencoders) Work through the Autoen-

coders notebook. Try to improve the performance of the

autoencoders. Report your findings (even if you don’t man-

age to improve them! :-)).

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM5/Autoencoders.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM5/Autoencoders.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM5/Autoencoders.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM5/DoubleML_and_Feature_Engineering_with_BERT.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM5/DoubleML_and_Feature_Engineering_with_BERT.ipynb
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Exercise 10.9.2 (BERT) Work through the BERT notebook.

Try to experiment with the structure of the neural nets and

demand estimation procedure. Report your findings.
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