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"Infer: to form an opinion or guess that something

is true because of the information that you have."

– Cambridge Dictionary [1].

Least squares—particularly in the form of linear regression—is

among the most widely used and intuitive statistical methods,

useful for both predictive inference and identifying associations.

Introduced in the early 1800s by L. Legendre and C. F. Gauss, it

has become a foundational tool in data analysis. Here, we review

the properties of least squares estimation for linear models in

moderately high-dimensional settings, focusing on its utility

in prediction and association analysis. This discussion sets the

stage for our subsequent review of modern statistical (machine)

learning approaches, which relax dimensionality assumptions

and incorporate nonlinear models.
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Figure 1.1: The only known portrait

of Legendre (a friendly caricature)

by Julien Léopold Boilly. Source:

Wikipedia. The hairstyle is amaz-

ing.

Figure 1.2: AI-based reconstruction

of a more realistic portrait of Leg-

endere based on Boilly’s caricature.

Source: generated by authors using

ChatGPT-4, who noted that “this

image captures the intense and ex-

pressive nature that was suggested

by the caricature, with a dignified

and classical appearance."

1.1 Foundation of Linear Regression

Regression and the Best Linear Prediction Problem

We consider a scalar random variable 𝑌, an outcome of interest,

and a 𝑝-vector of covariates

𝑋 = (𝑋1, . . . , 𝑋𝑝)′.

We assume that a constant of 1 is included as the first component

in 𝑋; that is, 𝑋1 = 1.

For theoretical purposes, we first consider linear regression in

the population. Working in the population means that we have

access to unlimited amounts of data to compute population

moments – such as E[𝑌], E[𝑌𝑋], and E[𝑋𝑋′] – and that we can

define "ideal" quantities. After defining these ideal quantities,

we then turn to estimation with real data, which we will take to

be a sample of observations drawn from the population.

Our first goal is to construct the best linear prediction rule for

𝑌 using 𝑋. That is, the predicted value of 𝑌 given 𝑋 will be of

the linear form:

𝑝∑
𝑗=1

𝛽 𝑗𝑋𝑗 = 𝛽′𝑋, for 𝛽 = (𝛽1, ..., 𝛽𝑝)′,

where 𝛽’s are called the regression parameters or coefficients.

We define 𝛽 as any solution to the Best Linear Prediction (BLP)
Problem,

min

𝑏∈ℝ𝑝
E

[
(𝑌 − 𝑏′𝑋)2

]
,

where we minimize the Expected or Mean Squared Error (MSE)

for predicting 𝑌 using the linear rule

𝑏′𝑋 =

𝑝∑
𝑗=1

𝑏 𝑗𝑋𝑗 , 𝑏 = (𝑏1, ..., 𝑏𝑝)′.

The solution to this optimization problem, 𝛽′𝑋, is called the

Best Linear Predictor (BLP) of 𝑌 using 𝑋. This jargon refers to

the fact that 𝛽′𝑋 is the best, according to MSE, linear prediction

rule for 𝑌 among all possible linear prediction rules.

We can compute 𝛽 by solving the first order conditions for the

BLP problem:

E [(𝑌 − 𝛽′𝑋)𝑋] = 0.
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1: Note that we use ⊥ to denote or-

thogonality between random vari-

ables, and ⊥⊥ to denote full statisti-

cal independence. That is, for ran-

dom variables 𝑈 and 𝑉 , 𝑈 ⊥ 𝑉

means E[𝑈𝑉] = 0. Further, if 𝑈

is a centered random variable, then

𝑈 ⊥⊥ 𝑉 implies 𝑈 ⊥ 𝑉 , but the

reverse implication is not true in

general. Indeed, let 𝑈 ∼ 𝑁(0, 1)
and 𝑉 = 𝑈2 − 1, then 𝑈 ⊥ 𝑉 but

𝑈 ̸⊥⊥ 𝑉.

These equations are also referred to as the Normal Equations

and are obtained by setting the derivative of the objective

function 𝑏 ↦→ E

[
(𝑌 − 𝑏′𝑋)2

]
with respect to 𝑏 equal to zero.

Thus, any solution to the BLP problems satisfies the Normal

Equations.

Defining the regression error or residual as

𝜀 := (𝑌 − 𝛽′𝑋),

we can write the Normal Equations as
1

E [𝜀𝑋] = 0, or equivalently 𝜀 ⊥ 𝑋.

Therefore, the BLP problem provides a simple decomposition

of 𝑌:

𝑌 = 𝛽′𝑋 + 𝜀, 𝜀 ⊥ 𝑋,

where 𝛽′𝑋 is the part of 𝑌 that can be linearly predicted or

explained with 𝑋, and 𝜀 is whatever remains – the so-called

unexplained or residual part of 𝑌.

Best Linear Approximation Property

The normal equation E [(𝑌 − 𝛽′𝑋)𝑋] = 0 implies by the law of

iterated expectations that

E [(E[𝑌 | 𝑋] − 𝛽′𝑋)𝑋] = 0.

Therefore, the BLP of 𝑌 is also the BLP for the conditional

expectation of 𝑌 given 𝑋. This observation is important and

motivates the use of various transformations of regressors to

form 𝑋.

From Best Linear Predictor to Best Predictor

Here we explain the use of constructed features or regressors. If

𝑊 are "raw" regressors/features, technical (constructed) regressors
are of the form

𝑋 = 𝑇(𝑊) = (𝑇1(𝑊), ..., 𝑇𝑝(𝑊))′,

where the set of transformations 𝑇(𝑊) is sometimes called the

dictionary of transformations. Example transformations include

polynomials, interactions between variables, and applying func-

tions such as the logarithm or exponential. In the wage analysis
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2: This result follows by rewriting

the objective function as

min

𝑚(𝑊)
E[E[(𝑌 − 𝑚(𝑊))2 | 𝑊]],

noting that it is equivalent to

E[min

𝜇∈ℝ
E[(𝑌 − 𝜇)2 | 𝑊]],

and deriving the first order condi-

tions for the inner minimization:

𝐸(𝑌 | 𝑊) − 𝜇 = 0.

3: Unless the conditional expecta-

tion function turns out to be linear,

in which case the conditional ex-

pectation and best linear prediction

rule coincide.

reported below, for example, we use quadratic and cubic trans-

formations of experience, as well as interactions (products) of

these regressors with education and geographic indicators.

The main motivation for the use of constructed regressors is

to build more flexible and potentially better prediction rules. The

potential for improved prediction arises because we are using

prediction rules 𝛽′𝑋 = 𝛽′𝑇(𝑊) that are nonlinear in the original

raw regressors𝑊 and may thus capture more complex patterns

that exist in the data. Conveniently, the prediction rule 𝛽′𝑋 is

still linear with respect to the parameters, 𝛽, and with respect

to the constructed regressors 𝑋 = 𝑇(𝑊).

In the population, the best predictor of 𝑌 given𝑊 is

𝑔(𝑊) = E[𝑌 | 𝑊],

the conditional expectation of 𝑌 given 𝑊 . The conditional expec-
tation function 𝑔(𝑊) is also called the regression function of 𝑌

on𝑊 . Specifically, the conditional expectation function 𝑔(𝑊)
solves the best prediction problem

2

min

𝑚(𝑊)
E

[
(𝑌 − 𝑚(𝑊))2

]
.

Here we minimize the MSE among all prediction rules 𝑚(𝑊)
(linear or nonlinear in𝑊).

As the conditional expectation solves the same problem as the

best linear prediction rule among a larger class of candidate

rules, the conditional expectation generally provides better

predictions than the best linear prediction rule.
3

By using 𝛽′𝑇(𝑊), we are implicitly approximating the best

predictor 𝑔(𝑊) = E[𝑌 |𝑊]. Indeed, for any parameter 𝑏,

E

[
(𝑌 − 𝑏′𝑇(𝑊))2

]
= E

[
(𝑔(𝑊) − 𝑏′𝑇(𝑊))2

]
+E

[
(𝑌 − 𝑔(𝑊))2

]
,

That is, the mean squared prediction error is equal to the

mean squared approximation error of 𝑏′𝑇(𝑊) to 𝑔(𝑊) plus

a constant that does not depend on 𝑏. Therefore, minimizing

the mean squared prediction error is the same as minimizing

the mean squared approximation error. Thus, the BLP 𝛽′𝑇(𝑊)
is the Best Linear Approximation (BLA) to the best predictor,

which is the regression function 𝑔(𝑊). Finally, as the dictionary

of transformations 𝑇(𝑊) becomes richer, the quality of the

approximation of the BLA 𝛽′𝑇(𝑊) to the best predictor 𝑔(𝑊)
improves.
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Example 1.1.1 (Approximating a Smooth Function with a Poly-

nomial Dictionary) Suppose𝑊 ∼ 𝑈(0, 1)where𝑈 denotes

the continuous uniform distribution, and

𝑔(𝑊) = exp(4 ·𝑊).

We use

𝑇(𝑊) = (1,𝑊,𝑊2, . . . ,𝑊 𝑝−1)′︸                      ︷︷                      ︸
𝑝 terms

to form the BLA/BLP, 𝛽′𝑇(𝑊). Figure 1.3 provides a sequence

of panels that illustrate the approximation properties of the

BLA/BLP corresponding to 𝑝 =2, 3, and 4:

▶ With 𝑝 = 2 we get a linear in𝑊 approximation to 𝑔(𝑊).
As the figure shows, the quality of this approximation

is poor.

▶ With 𝑝 = 3 we get a quadratic-in-𝑊 approximation

to 𝑔(𝑊). Here, the approximation quality is markedly

improved relative to 𝑝 = 2 though approximation errors

are still clearly visible.

▶ With 𝑝 = 4 we get a cubic-in-𝑊 approximation to

𝑔(𝑊), and the quality of approximation appears to be

excellent.

This simple example highlights the motivation for using non-

linear transformations of raw regressors in linear regression

analysis. What this example does not yet reveal are the statis-
tical challenges of dealing with higher and higher dimension

𝑝 when learning from a finite sample.
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Figure 1.3: Refinements of Approx-

imation to Regression Function

𝑔(𝑊) by using polynomials of𝑊 .
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4: See, e.g., Tsybakov [2]. We will

also consider nonlinear approxima-

tions using trees and neural net-

works in Chapter 8.

5: By treating the observations as

iid, we are modeling the data as

independent random draws with

replacement from a population.

Other possible models include sam-

pling without replacement from

a finite population, stratified sam-

pling, observations of a process

over time, and other schemes or sce-

narios that induce dependence be-

tween the data points. For the most

part, we focus on the iid model

throughout this book, as it typically

conveys the key aspects of the in-

ferential problem sufficiently well.

6: 𝔼𝑛 abbreviates the notation

1

𝑛

∑𝑛
𝑖=1

. For example,

𝔼𝑛[ 𝑓 (𝑌, 𝑋)] :=
1

𝑛

𝑛∑
𝑖=1

𝑓 (𝑌𝑖 , 𝑋𝑖).

7: The hat notation ˆ is com-

monly used to denote estimators—

quantities derived from a sample.

For instance, 𝛽 represents the best

linear predictor (BLP) in the popu-

lation (the estimand), whereas �̂� is

the corresponding estimator com-

puted from the sample.

There are many ways of generating flexible approximations,

which are studied by approximation theory and nonparametric

statistical learning theory.
4

When we have multiple variables, we may generate transforma-

tions of each of the variables and employ interactions – products

involving these terms. As a simple concrete example, consider

a case with two raw regressors, 𝑊1 and 𝑊2. We could build

polynomials of second order in each of the raw regressors –

(1,𝑊1,𝑊
2

1
), (1,𝑊2,𝑊

2

2
). We may then collect these variables

along with the interaction in the raw regressors, 𝑊1𝑊2 in a

vector

(1,𝑊1,𝑊2,𝑊
2

1
,𝑊2

2
,𝑊1𝑊2)

for use in a regression model. There are, of course, many

other possibilities such as considering higher order polynomial

terms, e.g.𝑊3

1
; higher order interactions, e.g.𝑊2

1
𝑊2; and other

nonlinear transformations, e.g. log(𝑊1).

1.2 Statistical Properties of Least Squares

The Best Linear Prediction Problem in Finite

Samples

In practice, the researcher does not have access to the entire

population, but observes only a sample

{(𝑌𝑖 , 𝑋𝑖)}𝑛𝑖=1
= ((𝑌1, 𝑋1), ..., (𝑌𝑛 , 𝑋𝑛)).

We assume that this sample is a random sample from the

distribution of (𝑌, 𝑋). Formally, this condition means that the

observations were obtained as realizations of independently

and identically distributed (iid) copies of the random variable

(𝑌, 𝑋).5

We construct the best in-sample linear prediction rule for𝑌 using

𝑋 analogously to the population case by replacing theoretical

expected values, E, with empirical averages, 𝔼𝑛 .
6

Specifically,

given 𝑋, our predicted value of 𝑌 will be

𝑝∑
𝑗=1

�̂� 𝑗𝑋𝑗 = �̂�′𝑋, for �̂� = (�̂�1, ..., �̂�𝑝)′,

where �̂� is any solution to the Best Linear Prediction Problem in
the Sample, also known as Ordinary Least Squares (OLS):

7
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min

𝑏∈ℝ𝑝
𝔼𝑛[(𝑌 − 𝑏′𝑋)2].

That is, �̂� minimizes the sample MSE for predicting 𝑌 using

the linear rule 𝑏′𝑋. The �̂�’s are called the sample regression

coefficients.

We can compute �̂� as any solution to the Sample Normal

Equations,

𝔼𝑛[𝑋(𝑌 − 𝑋′�̂�)] = 0,

which are obtained as the first order conditions to the Best

Linear Prediction Problem in the Sample. Further, defining the

residuals (or, in-sample regression errors) as

�̂�𝑖 := (𝑌𝑖 − �̂�′𝑋𝑖),

we obtain the decomposition

𝑌𝑖 = 𝑋′𝑖 �̂� + �̂�𝑖 , 𝔼𝑛[𝑋 �̂�] = 0,

where 𝑋′
𝑖
�̂� is the predicted or explained part of 𝑌𝑖 , and �̂�𝑖 is the

unexplained or residual part.

Properties of Sample Linear Regression

The best linear prediction rule in the population is 𝛽′𝑋, and a

key question is whether �̂�′𝑋 estimates (that is, approximates

using data) 𝛽′𝑋 well.

The best linear prediction rule is also the best linear rule for

predicting future values of 𝑌 given a new draw 𝑋, when

new (𝑌, 𝑋) are sampled from the same population. Therefore,

if we can approximate the best linear prediction rule in the

population, we can also approximate the best linear prediction

rule for predicting outcomes given future 𝑋’s sampled from

the population.

The fundamental statistical issue is that we are trying to estimate

𝑝 parameters, 𝛽1, ..., 𝛽𝑝 , without imposing any assumptions

on these parameters. Intuitively, to estimate each parameter

well, we need many observations per parameter. This intuition

suggests that 𝑛/𝑝 should be large, or, equivalently that 𝑝/𝑛
should be small, in order for estimation error to be small. The

following result captures this intuition more formally.
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8: Given indexed random variables

(vectors, elements) 𝐴𝑛 and 𝐵𝑛 in a

metric space equipped with metric

𝑑, the notation 𝐴𝑛 ≈ 𝐵𝑛 means that

the distance between 𝐴𝑛 and 𝐵𝑛
concentrates around 0 – formally,

that lim𝑛→∞ P(𝑑(𝐴𝑛 , 𝐵𝑛) ≤ 𝜀) = 1

for each 𝜀 > 0.

The following theorem bounds the root mean square approxi-

mation error (RMSE) defined as:√
E𝑋[(𝛽′𝑋 − �̂�′𝑋)2] =

√
(�̂� − 𝛽)′E𝑋[𝑋𝑋′](�̂� − 𝛽),

where E𝑋 is the expectation with respect to 𝑋 alone.

Theorem 1.2.1 (Approximation of BLP by OLS) Under regular-
ity conditions,a the RMSE is bounded by:

constP,𝛼 ·
√

E𝜀2

√
𝑝/𝑛,

the inequality holds with probability approaching 1− 𝛼 as 𝑛 →∞,
and constP,𝛼 is a constant that depends on the distribution of (𝑌, 𝑋)
and 𝛼.
a
See Notes (Section 1.6) for references.

Theorem 1.2.1 says that, for nearly all realizations of data,

the sample linear regression is close to the population linear

regression if 𝑛 is large and 𝑝 is much smaller than 𝑛:
8√

E𝑋[(𝛽′𝑋 − �̂�′𝑋)2] ≈ 0.

In other words, under our requirement of 𝑝/𝑛 small, the sample

BLP approximates the population BLP well.

Analysis of Variance

Analysis of variance involves the decomposition of the variation

of 𝑌 into explained and unexplained parts. Explained variation

is a measure of the predictive performance of a model. This

decomposition can be conducted both in the population and in

the sample.

The main idea is to use the previous decomposition of 𝑌,

𝑌 = 𝛽′𝑋 + 𝜀, E[𝜀𝑋] = 0,

to decompose the variation in 𝑌 into the sum of explained
variation and residual variation:

E[𝑌2] = E[(𝛽′𝑋)2] + E[𝜀2].

The quantity

MSE𝑝𝑜𝑝 = E[𝜀2]
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Figure 1.4: Pythagoras of Samos

invented least squares and analysis

of variance for the case of 𝑛 = 2

and 𝑝 ≤ 2 around 570 BC. He was

therefore the first known machine

learner.

is the population MSE. The ratio of the explained variation to

the total variation is the population 𝑅2
:

𝑅2

𝑝𝑜𝑝 :=
E[(𝛽′𝑋)2]

E[𝑌2] = 1 − E[𝜀2]
E[𝑌2] ∈ [0, 1].

That is, 𝑅2

𝑝𝑜𝑝 is the proportion of variation of 𝑌 explained by

the BLP.

Remark 1.2.1 The "standard" definition of 𝑅2
assumes that

we work with a centered random variable 𝑌, that is, we recenter

𝑌 such that E[𝑌] = 0. (However, our definition above does

not require this property).

The decomposition of the variance in the sample proceeds

analogously. Using the representation

𝑌𝑖 = �̂�′𝑋𝑖 + �̂�𝑖

and the orthogonality condition 𝔼𝑛[𝑋 �̂�] = 0 provided by the

sample Normal Equations, we obtain the decomposition

𝔼𝑛[𝑌2] = 𝔼𝑛[(�̂�′𝑋)2] + 𝔼𝑛[�̂�2].

Thus, we can define the sample MSE,

MSE𝑠𝑎𝑚𝑝𝑙𝑒 = 𝔼𝑛[�̂�2],

and the sample 𝑅2
,

𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
:=

𝔼𝑛[(�̂�′𝑋)2]
𝔼𝑛[𝑌2] = 1 − 𝔼𝑛[�̂�2]

𝔼𝑛[𝑌2] ∈ [0, 1].

By the law of large numbers and Theorem 1.2.1, when 𝑝/𝑛 is

small, we have the following approximations:

𝔼𝑛[𝑌2] ≈ E[𝑌2], 𝔼𝑛[(�̂�′𝑋)2] ≈ E[(𝛽′𝑋)2], 𝔼𝑛[�̂�2] ≈ E[𝜀2].

Thus, when 𝑝/𝑛 is small and 𝑛 is large, the sample fit

measures are good approximations to population fit mea-

sures:

MSE𝑠𝑎𝑚𝑝𝑙𝑒 ≈ MSE𝑝𝑜𝑝 and 𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
≈ 𝑅2

𝑝𝑜𝑝 .
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9: The adjustment factor
𝑛
𝑛−𝑝 is de-

rived in a homoskedastic model, so

that E[MSE𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑] = MSE𝑝𝑜𝑝 , see

e.g., p. 8 in [3] for the derivation.

Overfitting: What Happens When 𝑝/𝑛 Is Not Small

When 𝑝/𝑛 is not small, the picture about predictive perfor-

mance of the in-sample BLP becomes inaccurate and possibly

misleading. In this setting, the in-sample linear predictor can

be substantially different from the population BLP.

Consider an extreme example where 𝑝 = 𝑛 and all variables in

𝑋 are linearly independent. In this case, we have

MSE𝑠𝑎𝑚𝑝𝑙𝑒 = 0 and 𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
= 1

no matter what MSE𝑝𝑜𝑝 and 𝑅2

𝑝𝑜𝑝 are. E.g. we could have

𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
= 1 even if 𝑅2

𝑝𝑜𝑝 = 0. Therefore, here we have an ex-

treme example of overfitting, where the in-sample predictive

performance overstates the out-of-sample predictive perfor-

mance of the linear model. The following example illustrates

less extreme cases.

The Notebooks 1.7.3 contain code

for the numerical experiment.
Example 1.2.1 (Overfitting Example) Suppose 𝑋 ∼ 𝑁(0, 𝐼𝑝)
and 𝑌 ∼ 𝑁(0, 1) are statistically independent. It follows that

the best linear predictor of 𝑌 is 𝛽′𝑋 = 0 and that 𝑅2

𝑝𝑜𝑝 = 0.

▶ If 𝑝 = 𝑛, then the typical 𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
is 1 ≫ 0.

▶ If 𝑝 = 𝑛/2, then the typical 𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
is about .5 ≫ 0.

▶ If 𝑝 = 𝑛/20, then the typical 𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
is about .05 > 0.

These results can be deduced by simulation or analytically.

Provided 𝑝 < 𝑛, better measures of out-of-sample predictive

ability are the "adjusted" 𝑅2
and MSE:

9

MSE𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝑛

𝑛 − 𝑝𝔼𝑛[�̂�
2], 𝑅2

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
:= 1 − 𝑛

𝑛 − 𝑝
𝔼𝑛[�̂�2]
𝔼𝑛[𝑌2] .

The adjustment by
𝑛
𝑛−𝑝 corrects for overfitting and provides

a more accurate assessment of predictive ability of the linear

model in Example 1.2.1 and more generally under the assump-

tion of homogeneous 𝜀. The intuition is that models with many

parameters increase the in-sample fit and potentially cause

overfitting. Hence, the number of parameters is incorporated

in the definition of MSE𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 and 𝑅2

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
in an attempt to

account for this phenomenon.
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10: If the "test set" is used many

times to evaluate models, it be-

comes a "validation" set. The term

"test set" is often reserved for the

final evaluations of very few mod-

els.

Measuring Predictive Ability by Sample Splitting

How should we measure the predictive ability of the linear

model (or other nonlinear models that we will discuss) more

reliably, even in cases when 𝑝/𝑛 is not small?

A general way to measure predictive performance is to

perform data splitting. The idea can be summarized in two

parts:

1. Use a random part of a dataset, called the training

sample, for estimating/training the prediction rule.

2. Use the other part, called the testing sample, to eval-

uate the quality of the prediction rule, recording

out-of-sample mean squared error and 𝑅2
.

Generally, a predictive model is trained on a sample and the

real test of its predictive ability happens when "new, unseen"

observations arrive. With new observations in hand, we learn

how far off our predictions are, when compared to the realized

values. By partitioning the data set into two parts, we preserve

an "unseen" set of observations on which to test our model,

mimicking this process of ex-post performance assessment.
10

The data splitting procedure can be described more formally as

follows:

Generic Evaluation of Prediction Rules by Sample-

Splitting

1. Randomly partition the data into training and testing

samples. Suppose we use 𝑛 observations for training

and 𝑚 for testing/validation.

2. Use the training sample to compute a prediction rule

𝑓 (𝑋). For example, 𝑓 (𝑋) = �̂�′𝑋 in the linear model.

3. Let Idenote the indexes of the observations in the test

sample. Then the out-of-sample/test mean squared

error is

MSE𝑡𝑒𝑠𝑡 =
1

𝑚

∑
𝑘∈I
(𝑌𝑘 − 𝑓 (𝑋𝑘))2,

and the out-of-sample/test 𝑅2
is

𝑅2

𝑡𝑒𝑠𝑡 = 1 − MSE𝑡𝑒𝑠𝑡

1

𝑚

∑
𝑘∈I𝑌

2

𝑘

.
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11: For example, we can make

sure that the proportions of

college-graduates and non-college-

graduates are the same in both

training and test samples. These

issues are important in moderate-

sized samples.

12: Note that this question is purely

about the properties of the predic-

tion rule and generally has nothing

to do with causality.

In Section 3.B, we consider a more data-efficient evaluation

procedure called cross-validation. In brief, we split the data

into 𝐾 folds of about equal size. For each fold, we repeat the

evaluation procedure by designating that fold as the "test" set

and using the remaining folds for training. We then average

the values of MSE𝑡𝑒𝑠𝑡 computed in each fold. Moreover, we can

also average these results over different Monte Carlo seeds.

There is an important variation on the sample splitting pro-

cedure, called stratified splitting that provides guarantees that

the training and test samples are similar across key subgroups

called "strata".
11

In large samples, training and test samples will

be similar across the subgroups by virtue of the laws of large

numbers, but similarity is not guaranteed in moderate-sized

samples. For more discussion, please see this blog on Data

Splitting [4].

1.3 Inference about Predictive Effects or

Association

Here we examine inference on predictive effects, which describe

how our (population best linear) predictions change if the value

of a regressor changes by a unit, while the other regressors

remain unchanged.

Specifically, we partition the vector of regressors 𝑋 into two

components:

𝑋 = (𝐷,𝑊 ′)′,

where 𝐷 represents the "target" regressor of interest, and 𝑊

represents the other regressors, sometimes called the controls.

We can therefore write

𝑌 = 𝛽1𝐷 + 𝛽′
2
𝑊

predicted value

+ 𝜀
error

, (1.3.1)

and ask the question:
12

How does the predicted value of 𝑌 change if 𝐷

increases by a unit while𝑊 remains unchanged?

The answer is the predicted value of 𝑌 changes by

𝛽1.

https://www.r-bloggers.com/2016/08/data-splitting/
https://www.r-bloggers.com/2016/08/data-splitting/
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13: Verify this as a reading exer-

cise. Use the definition of the BLP

decompositions of 𝑈 and 𝑉 with

respect to regressors 𝑊 , to derive

a BLP decomposition of 𝑌 with re-

spect to𝑊 .

Example 1.3.1 (Wage Differences) In the analysis of wages,

which we will discuss later in more detail, an interesting

question can be formulated as:

▶ "What is the difference in predicted wages between

female and non-female workers with the same job-

relevant characteristics?"

Let 𝐷 represent the female indicator and 𝑊 represent ex-

perience, educational, occupational, and geographic charac-

teristics. The answer to the question is then the population

regression coefficient

𝛽1

corresponding to 𝐷.

Understanding 𝛽1 via "Partialling-Out"

"Partialling-out" is an important tool that provides conceptual

understanding of the regression coefficient 𝛽1.

In the population, we define the partialling-out operation as

a procedure that takes a random variable 𝑉 and creates the

"residualized" variable �̃� by subtracting the part of 𝑉 that is

linearly predicted by𝑊 :

�̃� = 𝑉 − 𝛾′𝑉𝑊𝑊, 𝛾𝑉𝑊 ∈ arg min

𝛾
E

[
(𝑉 − 𝛾′𝑊)2

]
.

When 𝑉 is a vector, we apply the operation to each component.

It can be shown that the partialling-out operation is linear in

the sense that
13

𝑌 = 𝜈𝑉 + 𝜇𝑈 =⇒ �̃� = 𝜈�̃� + 𝜇�̃� .

Formally, this operation is well defined on the space of random

variables with finite second moments.

We apply the partialling-out operation to both sides of our

regression equation 𝑌 = 𝛽1𝐷 + 𝛽′
2
𝑊 + 𝜀 to get

�̃� = 𝛽1�̃� + 𝛽′
2
�̃� + �̃�,

which simplifies to the decomposition:

�̃� = 𝛽1�̃� + 𝜀, E

[
𝜀�̃�

]
= 0. (1.3.2)

Decomposition (1.3.2) follows because partialling-out eliminates

𝛽′
2
𝑊 , since �̃� = 0, and leaves 𝜀 untouched, �̃� = 𝜀, since 𝜀 is
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14: Technically, these are regres-

sion errors, not residuals, as we are

here working with the population,

whereas residuals refer to errors

to the sample regression fit. How-

ever, we will not adhere strictly to

this distinction as it will be conve-

nient to apply analogous logic to

partialling-out in the population

and the sample.

15: Why not?

linearly unpredictable by 𝑋 and therefore by 𝑊 . Moreover,

E[𝜀�̃�] = 0 since �̃� is a linear function of 𝑋 = (𝐷,𝑊 ′)′ and 𝜀 is

orthogonal to 𝑋 and therefore to any linear function of 𝑋.

The decomposition (1.3.2) implies that E𝜀�̃� = 0 are the Normal

Equations for the population regression of �̃� on �̃�. Therefore,

we just rediscovered the following result.

Theorem 1.3.1 (Frisch-Waugh-Lovell) Assume that 𝑌, 𝐷,𝑊
have finite second moments and that 𝐷 is not perfectly predictable
by𝑊 , i.e., E[�̃�2] > 0. The population linear regression coefficient
𝛽1 can be recovered from the population linear regression of �̃� on
�̃�:

𝛽1 = arg min

𝑏1

E[(�̃� − 𝑏1�̃�)2] = (E[�̃�2])−1

E[�̃��̃�].

In other words, 𝛽1 can be interpreted as a (univariate) linear

regression coefficient in the linear regression of residualized𝑌 on

residualized 𝐷, where the residuals
14

are defined by partialling-

out the linear effect of𝑊 from 𝑌 and 𝐷.

When we work with the sample, we simply mimic the partialling-

out operation in the population in the sample. In what follows,

we assume 𝑝/𝑛 is small, so sample linear regression provides

high-quality partialling-out. By the FWL Theorem applied to

the sample instead of in the population, the sample linear

regression of 𝑌 on 𝐷 and𝑊 gives us the estimator �̂�1 which is

identical to the estimator obtained via sample partialling-out.

It is useful to give the formula for �̂�1 in terms of sample

partialling-out:

�̂�1 = arg min

𝑏
𝔼𝑛[(�̌� − 𝑏�̌�)2] = (𝔼𝑛[�̌�2])−1𝔼𝑛[�̌��̌�], (1.3.3)

where �̌�𝑖 is the residual left after predicting 𝑉𝑖 with controls

𝑊𝑖 in the sample and we assume 𝔼𝑛[�̌�2] > 0. That is,

�̌�𝑖 = 𝑉𝑖 − �̂�′𝑉𝑊𝑊𝑖 , �̂�𝑉𝑊 ∈ arg min

𝛾
𝔼𝑛[(𝑉 − 𝛾′𝑊)2].

From Theorem 1.2.1, we know that using sample linear regres-

sion for partialling-out will provide high-quality estimates of

the residuals when 𝑝/𝑛 is small. When 𝑝/𝑛 is not small, using

sample linear regression for partialling-out won’t be such a

good idea and an alternative is to use penalized regression or

dimension reduction. We will cover this in Chapter 3, but we

can definitely try it out in the empirical example that concludes

this chapter before we even attempt to understand it.
15
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16: We’ll defer the formal defintion

of Neyman orthogonality for a bit.

See Section 4.3.

17: An alternative is to use

𝑛
𝑛−𝑝 (𝔼𝑛[�̌�2])−1𝔼𝑛[�̂�2] instead of �̂� ,

which is a “classical” choice. How-

ever, this choice is not robust to

the presence of heteroscedasticity – a

term that denotes the conditional

variance of 𝜀 depending on𝑋 – and

is therefore not valid in general. We

never use the “classical” choice in

this book, even though it is still a

default reporting option in some

statistical software.

Adaptive Statistical Inference

We next consider the large sample properties of the estimator

�̂�1.

Theorem 1.3.2 (Adaptive Statistical Inference) Under regularity
conditions and if 𝑝/𝑛 ≈ 0, the estimation error in �̌�𝑖 and �̌�𝑖 has
no first order effect on the stochastic behavior of �̂�1. Namely,

√
𝑛(�̂�1 − 𝛽1) ≈

√
𝑛𝔼𝑛[�̃�𝜀]/𝔼𝑛[�̃�2] (1.3.4)

and consequently,
√
𝑛(�̂�1 − 𝛽1) a∼ 𝑁(0, V)

where
V = (E[�̃�2])−1

E[�̃�2𝜀2](E[�̃�2])−1.

The notation 𝐴𝑛
a∼ 𝑁(0, V)

reads as 𝐴𝑛 is approximately dis-

tributed as 𝑁(0, V). Approximate

distribution formally means that

sup𝑅∈R |P(𝐴𝑛 ∈ 𝑅) − P(𝑁(0, V) ∈
𝑅)| ≈ 0, where R is the collection

of rectangular sets (intervals for the

case of 𝐴𝑛 being a scalar random

variable).

We can equivalently write

�̂�1

a∼ 𝑁(𝛽1, V/𝑛).

That is, �̂�1 is approximately normally distributed with mean 𝛽1

and variance V/𝑛. Thus, �̂�1 concentrates in a

√
V/𝑛- neighbor-

hood of 𝛽1 with deviations controlled by the normal law.

The first result in Theorem 1.3.2, equation (1.3.4), states the esti-

mator minus the estimand is an approximate centered average.

The remaining properties stated in the theorem then follow

from the central limit theorem.

The adaptivity refers to the fact that estimation of residuals �̌�

has a negligible impact on the large sample behavior of the OLS

estimator – the approximate behavior is the same as if we had

used true residuals �̃� instead. This adaptivity property will be

derived later as a consequence of a more general phenomenon

which we shall call Neyman orthogonality.
16

The estimated standard error of �̂�1 is

√
V̂/𝑛, where V̂ is any

estimator of V based on the plug-in principle such that V̂ ≈ 𝑉 .

The standard estimator for independent data is called the Eicker-

Huber-White robust variance estimator ([5], [6],[7], [8]):

V̂ = (𝔼𝑛[�̌�2])−1𝔼𝑛[�̌�2�̂�2](𝔼𝑛[�̌�2])−1.

This standard error estimator formally works when 𝑝/𝑛 ≈ 0,

but fails in settings where 𝑝/𝑛 is not small; see, e.g., [9].

Consider the set, called the (1 − a)% confidence interval, 17
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[𝑙 , �̂�] :=

[
�̂�1 − 𝑧1−a/2

√
V̂/𝑛, �̂�1 + 𝑧1−a/2

√
V̂/𝑛

]
,

where 𝑧
1−a/2 denotes the (1 − a/2)−quantile of the standard

normal distribution. We say that a (1 − a) × 100% confidence

interval contains the true value 𝛽1 “(1 − a) × 100% of the time,”

approximately. For example, the 95% confidence interval is

given by [
�̂�1 − 1.96

√
V̂/𝑛, �̂�1 + 1.96

√
V̂/𝑛

]
,

and contains 𝛽1 approximately 95% of the time.

Remark 1.3.1 (What does "of the time" mean?) If we imagine

drawing samples of size 𝑛 repeatedly from the same popula-

tion, a (1− a) × 100% confidence interval would contain 𝛽1 in

approximately (1 − a) × 100% of those samples:

P

(
[𝑙 , �̂�] contains 𝛽1

)
≈ 1 − a.

In other words, aside from “atypical” samples—occurring

with (small) probability≈ a—the confidence interval contains

the population value of the best linear predictor coefficient 𝛽1.

In practice, of course, we do not repeatedly redraw samples;

we work with a single fixed sample. Nevertheless, we hope

that our sample is not one of those atypical ones, so that we

do indeed achieve the desired coverage (or containment) of

the true coefficient. Thus, the idea of repeated sampling, also

known as frequentist inference, is only used to define the

exact meaning of the confidence.

1.4 Application: Wage Prediction and

Gaps

In labor economics, an important question is what determines

the wage of workers. Interest in this question goes back at least

to the work of Jacob Mincer (see [10]). While determining the

factors that lead to a worker’s wage is a causal question, we can

begin to investigate it from a predictive perspective. We aim to

answer two main questions:

▶ The Prediction Question: How can we use job-relevant

characteristics, such as education and experience, to best

predict wages?
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18: More precisely, we will analyze

the sex pay gap using data from the

CPS 2015, where sex is recorded

as binary and self-reported vari-

able. In labor economics, such anal-

yses are often referred to as "gender

wage gap" studies; see, for exam-

ple, the Nobel lecture by Claudia

Goldin [11] for an overview of this

area of research.

19: The Notebooks 1.7.1 contain the

predictive exercise for wages.

▶ The Predictive Effect or Association Question: What is the

difference in predicted wages between male and female

workers with the same job-relevant characteristics?

We illustrate using data from the 2015 March Supplement of

the U.S. Current Population Survey (CPS 2015). As outcome,

𝑌, we use the log hourly wage, and we let 𝑋 denote various

characteristics of workers, including sex.

We focus on a (sub) sample of single (never married) workers,

which is of size 𝑛 = 5, 150. Table 1.1 provides mean characteris-

tics of some key variables.

Sample Mean

Log Wage 2.97

Female 0.44

Some High School 0.02

High School Graduate 0.24

Some College 0.28

College Graduate 0.32

Advanced Degree 0.14

Experience 13.76

Table 1.1: Descriptive statistics for

sample of never married workers.

We will estimate a linear predictive (regression) model for log

hourly wage using job-relevant characteristics

𝑌 = 𝛽′𝑋 + 𝜀, 𝜀 ⊥ 𝑋,

and assess the quality of the empirical prediction rule �̂�′𝑋 using

out-of-sample prediction performance.

We will also analyze if there is a gap (difference) in pay for

male and female workers.
18

Any such gap may partly reflect

discrimination in the labor market. We will discuss the potential

to learn about discrimination as a causal mechanism in more

detail in Chapter 6.

Prediction of Wages

Our goal here is to predict (log) wages using various character-

istics of workers, and assess the predictive performance of two

linear models using adjusted MSE and 𝑅2
and out-of-sample

MSE and 𝑅2
.

We start with two different specifications of covariates to use as

predictors:
19
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▶ In the Basic Model 𝑋 consists of a set of raw regressors

(e.g. sex, experience, education indicators, occupation and

industry indicators, and regional indicators), for a total of

𝑝 = 51 regressors. Our basic specification is inspired by

the famous Mincer equation from labor economics; see,

e.g., [10] for a review.

▶ In the Flexible Model, 𝑋 consists of all raw regressors

from the basic model as well as technical regressors, which

are transformations of the raw regressors, namely, poly-

nomials in experience (experience
2
, experience

3
, and

experience
4
) and additional two-way interactions of the

polynomials in experience with all other raw regressors

except for sex. An example of a regressor created through

a two-way interaction is experience times the indicator of

having a college degree. In total, we have 𝑝 = 246 regressors.

p 𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
𝑀𝑆𝐸𝑠𝑎𝑚𝑝𝑙𝑒 𝑅2

𝑎𝑑𝑗
𝑀𝑆𝐸𝑎𝑑𝑗

basic 51 0.30 0.23 0.30 0.23

flexible 246 0.35 0.22 0.31 0.23

flexible Lasso 246 0.32 0.23 0.31 0.23

Table 1.2: Assessment of predic-

tive performance with in-sample

𝑅2
and 𝑀𝑆𝐸.

To enable both in- and out-of-sample performance evaluation.

We start by randomly selecting 80% of the observations as

the training sample and keep the other 20% for use as a test

sample.

Table 1.2 shows measures of predictive performance in the train-

ing data. That is, the table reports predictive performance on

the same data that were used to estimate the model parameters.

The flexible regression model performs slightly better than the

basic model (higher 𝑅2

𝑎𝑑𝑗
and lower 𝑀𝑆𝐸𝑎𝑑𝑗). Note also that the

discrepancy between the unadjusted and adjusted measures is

not large, which is expected given that

𝑝/𝑛 is small.

We report results for evaluating the prediction rules in the test

data in Table 1.3. That is, the table reports predictive perfor-

mance on new data that were not used to estimate the models.

Based on this exercise, it appears that the basic regression model

works slightly better than the flexible regression at predicting

log wages for new observations. That is, we see that the test

(out-of-sample) 𝑀𝑆𝐸 and 𝑅2
for the basic regression model



1 Predictive Inference with Linear Regression in Moderately High
Dimensions

30

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 𝑅2

𝑡𝑒𝑠𝑡
basic 0.197 0.328

flexible 0.206 0.296

flexible Lasso 0.200 0.317

Table 1.3: Assessment of predictive

performance on a 20% validation

sample.

20: Lasso stands for "Least Abso-

lute Shrinkage and Selection Oper-

ator".

are respectively slightly lower and higher than those of the

flexible regression model, indicating slightly superior out-of-

sample predictive performance. This behavior is different from

that obtained when looking at the within sample fit statistics

reported in Table 1.2.

Tables 1.2 and 1.3 also provide the test 𝑀𝑆𝐸 of the flexible

model estimated via Lasso regression.
20

Lasso is a penalized

regression method used to reduce the complexity of a regression

model when the ratio 𝑝/𝑛 is not small. It achieves this by

penalizing the sum of the absolute values of the regression

coefficients, thereby shrinking some coefficients to exactly zero

and effectively performing variable selection.

We introduce this method in more detail in Chapter 3, but

it is applied here despite appearing as a "black box" at this

stage. The out-of-sample 𝑀𝑆𝐸 can also be computed for any

other black-box prediction method. In this example, Lasso

performs similarly to the basic and flexible regression models

estimated using OLS. This result is not surprising, given the

modest dimensionality of the problem and the similarity in

performance between the two OLS-estimated models.

Finally, to highlight the potential of estimating the linear model

via OLS to overfit, we consider one more model.

▶ In the Extra Flexible Model, 𝑋 consists of sex and all

two-way interactions between experience, experience
2
,

experience
3
, experience

4
, and all other raw regressors

except for sex. In total, we have 𝑝 = 979 regressors in this

specification.

OLS Lasso

𝑀𝑆𝐸𝑠𝑎𝑚𝑝𝑙𝑒 0.178 0.210

𝑀𝑆𝐸𝑎𝑑𝑗 0.235 0.223

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 0.250 0.199

𝑅2

𝑠𝑎𝑚𝑝𝑙𝑒
0.467 0.368

𝑅2

𝑎𝑑𝑗
0.345 0.331

𝑅2

𝑡𝑒𝑠𝑡 0.148 0.322

Table 1.4: Assessment of predictive

performance in the extra flexible

model with 𝑝 = 979 regressors.
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We report measures of predictive performance in the training

and test data from OLS and Lasso estimates of our “extra flexible”

model in Table 1.4. Here, we see that the model estimated by OLS

appears to be overfitting. The in-sample statistics substantially

overstate predictive performance relative to the performance we

see in the test data. For example, the 𝑅2
and adjusted 𝑅2

in the

training data are 0.467 and 0.345, both of which substantially

overstate the 𝑅2
obtained in the test data, 0.148. We also see that

the performance on the test data for the extra flexible model is

substantially worse than the performance of the much simpler

basic and flexible models. That is, it looks like the OLS estimates

of the extra flexible model have specialized to fitting aspects

of the training data that do not generalize to the test data and

lead to a deterioration in predictive performance relative to the

simpler models.

The performance of the Lasso contrasts sharply with this be-

havior. We see that the in-sample and out-of-sample predictive

performance measures for the Lasso based estimates of the

extra flexible model are similar to each other. They are also

similar to the performance of the simpler models. It seems

that Lasso is finding a competitive predictive model without

overfitting even in the extra flexible model. We will return to

this behavior in Chapter 3 where we will show that Lasso and

related methods are able to find good prediction rules in even

extremely high-dimensional settings, where for example 𝑝 ≫ 𝑛,

where OLS breaks down theoretically and in practice.

Wage Gap

The Notebooks 1.7.2 contain the

code for this section.
An important question is whether there is a gap (i.e., difference)

in predicted wages between male and female workers with the

same job-relevant characteristics. To answer this question, we

estimate the log-linear regression model:

𝑌 = 𝛽1𝐷 + 𝛽′
2
𝑊 + 𝜀, (1.4.1)

where 𝑌 is log-wage, 𝐷 is the sex indicator (1 if female and

0 otherwise) and the 𝑊 ’s are other determinants of wages.

𝑊 includes a constant of 1, education, polynomials in experi-

ence, region, and occupation and industry indicators plus all

two-way interactions of polynomial in experience with region,

occupation, and industry indicators. This gives us 𝑝 = 246

regressors.

As we have log-transformed wages, we are analyzing the relative

difference in pay for male and female workers. Table 1.5 tabulates
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All Male Female

Log Wage 2.9708 2.9878 2.9495

Less then High School 0.0233 0.0318 0.0127

High School Graduate 0.2439 0.2943 0.1809

Some College 0.2781 0.2733 0.2840

College Graduate 0.3177 0.2940 0.3473

Advanced Degree 0.1371 0.1066 0.1752

Experience 13.7606 13.7840 13.7313

Table 1.5: Empirical means for the

groups defined by the sex variable

for never-married workers.

21: This interpretation relies on the

approximation log(𝑎) − log(𝑏) ≈
(𝑎 − 𝑏)/𝑏, which is accurate when-

ever (𝑎 − 𝑏)/𝑏 is small and 𝑎, 𝑏 > 0.

mean characteristics given sex. It shows that the difference

in average log-wage between never married male and never

married female workers is equal to 0.038 with male workers

earning more. Thus, in this group, male average wage is about

3.8% higher than female average wage.
21

We also observe that

never married female workers are relatively more educated

than never married male workers.

Table 1.6 summarizes the regression results. Overall, we see that

the unconditional wage gap of size 3.8% for female workers

increases to about 7% after controlling for worker characteristics.

This means we would predict a female worker’s wage to be

about 7% less per hour on average than the wage of a male

worker who had the same experience, education, geographical

region and occupation.

The partialling-out approach provides a numerically identical

estimate for the coefficient 𝛽1 (𝛽1 ≈ 7%), numerically confirming

the FWL theorem. Using Lasso for partialling-out (p-out w/ Lasso)

gives similar results to using OLS. This similarity is expected

here, since

𝑝/𝑛 is small,

and partialling out by least squares should work well.

Estimate Std. Error

reg without controls −0.038 0.016

reg with controls −0.070 0.015

partial out reg w/ controls −0.070 0.015

Double Lasso (p-out w/ Lasso) −0.072 0.015

Table 1.6: Estimated conditional

wage gaps for never married work-

ers.

To sum up, our estimate of the conditional wage gap for

never-married workers using OLS is about −7% and the

95% confidence interval is about [−10%,−4%].
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22: 𝔼𝑛[· | 𝐷 = 𝑑] abbreviates 𝔼𝑛
for the subsample of the data where

𝐷 = 𝑑, for 𝑑 = 0, 1.

23: Decompositions of this sort

and the one given below are called

Kitagawa-Oaxaca-Blinder decomposi-
tion introduced in [12], [13], and

[14], in different contexts.

24: Differences of this sort poten-

tially reveal discrimination in the

pay structure, a question we will

return to later in the book.

25: Using the full sample yields re-

sults very similar to those reported

in the previous section. In this case,

𝑝/𝑛 ≈ 1/5, which is small enough

for conventional OLS inference to

perform reasonably well, demon-

strating its substantial resilience.

Please verify this as an exercise us-

ing the Wage Gap Notebook.

26: The jackknife variance estima-

tor is a resampling-based method.

First, an estimate �̂� is computed us-

ing all 𝑛 observations. Then, each

observation is omitted one at a time,

and the model is refitted to obtain

a new estimate �̂�(−𝑖). The variance

estimate is calculated as

V̂ar(�̂�) = 𝑛 − 1

𝑛

𝑛∑
𝑖=1

(
�̂�(−𝑖) − �̂�

)
2

,

which measures the sensitivity of

�̂� to individual data points by com-

paring leave-one-out estimates to

the original estimate.

Kitagawa-Oaxaca-Blinder Decomposition

One way to understand the estimate with controls (−0.070) is

as the part of the total gap (−0.038) that cannot be explained

by differences in group characteristics. Namely, take Eq. (1.4.1)

and average it in the male and female groups
22

to obtain the

decomposition:
23

𝔼𝑛[𝑌 | 𝐷 = 1] − 𝔼𝑛[𝑌 | 𝐷 = 0]︸                                  ︷︷                                  ︸
−0.038

= �̂�1︸︷︷︸
−0.070

+ �̂�′
2
(𝔼𝑛[𝑊 | 𝐷 = 1] − 𝔼𝑛[𝑊 | 𝐷 = 0])︸                                         ︷︷                                         ︸

0.032

.

Here, the 0.032 difference in average log wages, predicted

based on differences in observed characteristics (𝑊 ) and slopes

(�̂�2), suggests higher average log wages for female workers

compared to male workers. However, this positive difference

is counteracted by a negative difference of −0.070 that remains

unexplained by the characteristics. This unexplained difference

arises from the different pay predicted for female and male

workers possessing the same characteristics.
24

1.5 Inference on Predictive Effect when

𝑝/𝑛 < 1 is not small
★

In order to wrap up and provide a stylized illustration of the

impact of dimensionality 𝑝 on inference, we revisit the extra-

flexible model from the prediction exercise, which used 𝑝 = 979

controls. To further "stress-test" the inference, we reduce the

sample size to 𝑛 = 1000 by selecting a random subset of the

original observations.
25

In this reduced-sample setting, we have 𝑝/𝑛 ≈ 1, meaning

the usual theory for estimating linear model coefficients using

OLS no longer applies. [15] provide more refined results for

OLS estimates of regression coefficients in the case where

𝑝/𝑛 → 𝐶 < 1. They show that OLS estimates of individual

coefficients can still be consistent in this regime and also provide

an estimator for the asymptotic variance that is consistent

when 𝑝/𝑛 < 1/2, as long as certain regularity conditions are

satisfied. Furthermore, they note that the usual Eicker-Huber-

White robust variance estimator is inconsistent in this high-

dimensional setting, while the jackknife variance estimator,
26

although not consistent, remains conservative.
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27: The Eicker-Huber-White vari-

ance estimator is often referred to as

“HC0” and the jackknife as “HC3.”

We report estimates of the conditional wage gap in this setup

in Table 1.7. Specifically, we report point estimates from OLS

applied to the full set of variables, providing both the Eicker-

Huber-White standard error (HC0) and the jackknife standard

error (HC3).
27

These are provided mainly for illustration, but

we note that HC0 is known to be inconsistent and to behave very

poorly—generally being far too small—in the high-dimensional

setting. HC3 is more reliable, but one should also be skeptical

given that 𝑝/𝑛 ≈ 1 in this example. Finally, we report point

estimates and standard errors for the Double Lasso procedure.

The resulting estimator is consistent, asymptotically normal,

and has estimable standard errors under the structure outlined

in Chapter 4 even when 𝑝 ≫ 𝑛. For now, we can think of it as a

point of comparison.

Estimate HC0 HC3

Regression -0.067 0.039 0.073

Double Lasso (p-out w/ Lasso) -0.054 0.034 0.034

Table 1.7: The estimated condi-

tional wage gaps for never married

workers with approximately 1000

controls in a sample of 1000 obser-

vations.

Comparing to the case with the full data set, we see that point

estimates are not wildly different but that standard errors are

larger. Part of the standard error difference is predicted simply

by the difference in sample sizes. Specifically,

√
5150/1000 ≈

2.27, so we would expect standard errors to be about 2.27 times

larger with 𝑛 = 1000 observations than with 𝑛 = 5150. This

inflation holds almost exactly for the Double Lasso estimates.

More interestingly, now that 𝑝/𝑛 0 0, we start seeing substantial

differences in standard errors between unregularized partialling

out (OLS) and partialling out with Lasso (also known as Double

Lasso). While we do not want to take the OLS standard errors too

seriously—given that the Huber-Eicker-White standard error

does not work in this setting and we are also skeptical of the

jackknife here—the comparison between the OLS and Double

Lasso standard errors, as well as the comparison to the full-

sample results, is revealing. Relative to the full sample results,

the jackknife standard error (HC3) is much larger than would

be expected simply due to the decrease in sample size. The

difference from this expectation (partially) reflects the impact of

dimensionality on the OLS estimate of the regression coefficient.

In contrast, the Double Lasso appears to be roughly insensitive

to the dimensionality of the control variables and scales exactly

as one would expect given the difference in sample size.

The punchline of this final example is that OLS is no longer

adaptive in the “𝑝/𝑛 not small” regime. The lack of adaptivity
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means that conventional properties of OLS may fail, and that

other procedures may become preferable to OLS.

1.6 Notes

Least squares were invented by Legendre ([16]) and Gauss

([17]) around 1800. Frisch, Waugh, and Lovell ([18],[19],[20])

discovered the partialling-out interpretation of the least squares

coefficients in the 1930s. The asymptotic theory mentioned in

Theorems 1.2.1 and 1.3.2 is more recent and has been developed

since early work of Huber in the 70s on𝑚-estimators (estimators

that minimize objective functions that correspond empirical

averages of losses) under moderately high dimensions; see e.g.

[21] and the textbook [22].

For a good, concise treatment of classical least squares, see for

example, Chapter 1 in Amemiya’s classical graduate economet-

rics text [3]; Bruce Hansen’s new textbook [23] is an excellent

up-to-date reference.

Regularity conditions under which Theorem 1.2.1 and Theorem

1.3.2 hold under 𝑝 → ∞ and 𝑝/𝑛 → 0 asymptotics can be

found in [24] and [15]. The results of the latter reference allow

for 𝑝/𝑛 → 𝑐 < 1, which introduces an additional asymptotic

variance term when 𝑐 > 0; the case with 𝑐 = 0 recovers Theorem

1.3.2. See also review [25] for some recent understanding of

properties of least squares estimators.

1.7 Notebooks

Notebook 1.7.1 (Predicting Wages) Predicting Wages R Note-

book and Predicting Wages Python Notebook contain a simple

predictive exercise for wages. We will return to this dataset

and prediction problem repeatedly in future chapters, re-

estimating it using a broad range of ML estimators and

providing a means of comparing their performance.

Notebook 1.7.2 (Analyzing Wage Gaps) Wage Gaps R Note-

book and Wage Gaps Python Notebook contain a simple

analysis of wage gaps.

Notebook 1.7.3 (Exploring Overfitting Notebook) The Linear

Model Overfitting R Notebook and the Linear Model Over-

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/r-ols-and-lasso-for-wage-prediction.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/r-ols-and-lasso-for-wage-prediction.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-ols-and-lasso-for-wage-prediction.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/r-ols-and-lasso-for-wage-gap-inference.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/r-ols-and-lasso-for-wage-gap-inference.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-ols-and-lasso-for-wage-gap-inference.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/r-linear-model-overfitting.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/r-linear-model-overfitting.irnb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-linear-model-overfitting.ipynb
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fitting Python Notebook contain a set of simple simulations

that show how measures of fit perform in a high 𝑝/𝑛 setting.

1.8 Exercises

Modern notebooks, including

Jupyter Notebooks, R Markdown,

and Quarto offer a simple way

to integrate code cells and expla-

nations (text and formulas) in a

single notebook. This allows the

user to execute code in discretized

chunks for clarity and ease of

debugging as well as to better

provide commentary on what the

code is doing. See the Notebooks

section above for examples.

Exercise 1.8.1 (Sample Splitting) Write a notebook (R, Python,

etc.) where you briefly explain the idea of sample splitting

to evaluate the performance of prediction rules to a fellow

student, and show how to use it on the wage data. The

explanation should be clear and concise (one paragraph

suffices) so that a fellow student can understand. You can

take our notebooks as a starting point, but provide a bit

more explanation and modify them by exploring different

specifications of the models (or looking at an interesting

subset of the data or even other data – for example, the data

you use for your research or thesis work).

Exercise 1.8.2 (Least Squares and Partialling-out) Write a

notebook (R, Python, etc), where you carry out a wage gap

analysis, focusing on the subset of college-educated workers.

The analysis should be analogous to what we’ve presented –

explaining "partialling out," generating point estimates and

standard errors – but don’t hesitate to experiment and explain

more. Exploring other data-sets or similar questions, e.g. wage

gaps by race, is always welcome.

Exercise 1.8.3 (Discovering Heterogeneity in Wage Gap) Write

a notebook (R, Python, etc.) where you carry out a wage gap

analysis and decomposition for each major education group

separately. In essence, this amounts to performing linear

wage gap regressions and decompositions for each group sep-

arately. Report the findings and any patterns of heterogeneity

you observe. Is the heterogeneity you see economically and

statistically significant? What if you perform the analysis

by occupation groups instead? How do these group-wise

decompositions contribute to the overall wage gap?

Exercise 1.8.4 (Machine Learning in Ancient Greece) The half-

serious link to Pythagoras was serious in its half. Consider

sample linear regression with 𝑛 = 2 and just one regressor,

so that 𝑌𝑖 = �̂�𝑋𝑖 + �̂�𝑖 for 𝑖 = 1, 2, where �̂� is the ordinary

least squares estimator, a scalar quantity in this case. Let

Y = (𝑌1, 𝑌2)′ , X = (𝑋1, 𝑋2)′, �̂� = (�̂�1, �̂�2)′, and let Ŷ = �̂�X. Find

https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-linear-model-overfitting.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-linear-model-overfitting.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-linear-model-overfitting.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-linear-model-overfitting.ipynb
https://colab.research.google.com/github/CausalAIBook/MetricsMLNotebooks/blob/main/PM1/python-linear-model-overfitting.ipynb
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28: Consider, for instance, the case

when𝑋𝑖 are centered and standard-

ized Bernoulli random variables

with success probability 𝑝, i.e.,𝑋𝑖 =
𝑍𝑖−𝑝√
𝑝(1−𝑝)

and 𝑍𝑖 is Bernoulli with

success probability 𝑝. The error

in the Berry-Esseen theorem, in

this case, becomes ≈ 1/
√
𝑝(1 − 𝑝)𝑛.

Thus, the error in the Gaussian ap-

proximation is guaranteed to be

small by the Berry-Esseen theorem

only if 𝑝(1 − 𝑝)𝑛 is large. Thus,

for extreme probabilities, where ei-

ther success or failure events are

extremely rare for the given sample

size, i.e., when 𝑝 · 𝑛 or (1 − 𝑝) · 𝑛
is small, the use of the Gaussian

approximation is not advisable.

the connection between the decomposition Y′Y/𝑛 = Ŷ′Ŷ/𝑛 +
�̂�′�̂�/𝑛 and the Pythagorean theorem. Find the geometric

interpretation for �̂�, and write the explicit formula for �̂� in

this case. If you get stuck, google the "geometric interpretation

of least squares."

1.A Central Limit Theorem
★

Univariate

Consider the scaled sum𝑊 =
∑𝑛
𝑖=1
𝑋𝑖/
√
𝑛 of independent and

identically distributed variables 𝑋𝑖 such that E[𝑋] = 0 and

Var (𝑋) = 1. The classical CLT states that 𝑊 is approximately

Gaussian provided that none of the summands are too large,

namely

sup

𝑥∈ℝ
|P(𝑊 ≤ 𝑥) − P(𝑁(0, 1) ≤ 𝑥)| ≈ 0.

This result is reassuring, but the theorem does not inform us

how small the error is in a given setting.

The Berry-Esseen theorem provides a quantitative characteriza-

tion of the error.

Theorem 1.A.1 (Berry-Esseen’s Central Limit Theorem)

sup

𝑥∈ℝ
|P(𝑊 ≤ 𝑥) − P(𝑁(0, 1) ≤ 𝑥)| ≤ 𝐾E[|𝑋 |3]/

√
𝑛,

for a numerical constant 𝐾 < .5.

The result asserts that the Gaussian approximation error rate

declines like 1/
√
𝑛. It also states that given 𝑛, the approxima-

tion quality improves as the third absolute moment E[|𝑋 |3]
decreases. This results gives a good guide regarding when the

Gaussian approximation gives accurate results.
28

Of course,

one can also check the approximation quality via simulation

experiments that mimic the practical situation.

Multivariate

Later in the book, we will use multivariate central limit theorems

as well. To this end, we are going to state the following more

general result due to [26], which refines earlier results by [27]

and [28].
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Let Ibe a countable set (either finite or infinite) and let 𝑋𝑖 , 𝑖 ∈
I, be independent ℝ𝑑

-valued random vectors. Assume that

E[𝑋𝑖] = 0 for all 𝑖 and that

∑
𝑖∈IVar (𝑋𝑖) = 𝐼𝑑. It is well known

that in this case, the sum 𝑊 :=
∑
𝑖∈I𝑋𝑖 exists almost surely

and that E𝑊 = 0 and Var(𝑊) = 𝐼𝑑.

Theorem 1.A.2 (Multivariate CLT; [26]) For 𝑋𝑖 and𝑊 as above
and all measurable convex sets 𝐴 ⊆ ℝ𝑑, we have

|P(𝑊 ∈ 𝐴) − P(𝑁 (0, 𝐼𝑑) ∈ 𝐴)| ≤
(
42𝑑1/4 + 16

) ∑
𝑖∈𝐼

E

[
∥𝑋𝑖 ∥3

]
.
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