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1: This effect may be referred to as

the price elasticity of demand for

the product.

2: Were the reader to do such an

analysis using internal company

data they would use actual sales

volumes.
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A primary question we will be concerned with in this book is:

What is the causal effect of an action on an outcome? For example,

we may want to know what the effect of setting a product’s

price is on the volume of its sales.
1

To consider this question

we scraped data on 9,212 toy cars from Amazon.com. Figure 0.1

shows a log-log-scale scatter plot of the 30-day average price at

which each was offered and the reciprocal of its sales rank, a

publicly available surrogate for sales volume.
2

We let 𝐷 denote

the log of the price and 𝑌 the negative log of the sales rank of a

toy car randomly drawn from the population of toy cars sold on

Amazon.com. We will use this example to preview the book’s

chapters and how they come together to enable the reader to

power applied causal inference on modern datasets using ML

and AI.
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Figure 0.1: Log-prices and log-

reciprocal-sales-rank of 9,212 toy

cars on Amazon.com along with a

linear fit.

In Chapter 1, we present linear regression by ordinary least

squares (OLS), which can help us understand the relationship

between these two variables. Here it suggests that a unit increase

in 𝐷 is associated with anything between a −0.008 and a 0.050

unit change in𝑌 on average over toy cars; that is, (−0.008, 0.050)
is the 95% confidence interval on the slope of the best linear

predictor. In words, it suggests one cannot rule out small neg-

ative or even slightly positive association between price and

sales. It would be incorrect, however, to infer that arbitrarily

increasing the price on any one toy car would cause almost no

effect on its sales volume, or even increase it.

Instead, economic theory would suggest that the unobserved

potential log-sales, 𝑌(𝑑), of any one toy car should in fact decrease
as the log-price that one sets, 𝑑, increases. In Chapter ??, we
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present this notion of potential outcomes and study inference

on their averages when actions are randomized (or, exogenous).
For example, we may be interested in the average sales if price

were set to a certain level. Unlike the randomized controlled

trial (RCT) setting discussed in that chapter, here prices are

not actually set at random; that is, prices are endogenous. Thus,

the reason we may see no or a slightly positive association is

confounding factors that affect both the potential sales at any one

price and the particular price that is set. For example, whether a

toy car is produced by a brand name or incorporates characters

from a popular TV show might increase sales at any one price

as well as lead the seller to choose a higher price, whether in

anticipation of higher demand or because of higher production

or licensing costs.

We formalize this notion of confounding in Chapter 5 and

consider causal inference on averages of potential outcomes

when one observes all confounding variables,𝑊 . In Chapter 6,

we go on to consider a linear structural equation,

𝑌(𝑑) = 𝛼𝑑 +𝑈, (0.0.1)

which posits that, on average, log-sales at any one log-price is a

linear function of the log-price, aside from the idiosyncrasies𝑈

of each one toy car. Within this structural equation, we interpret

𝛼 as the causal effect of 𝑑 on𝑌; that is, the effect of a change in 𝑑

on 𝑌 produced by intervening in the system to change 𝑑 while

holding all other determinants of sales constant. This causal

effect is generally not recovered from regression of observed 𝑌

on observed price, 𝐷, as observed price is set in the market and

plausibly related to unobserved factors𝑈 .

In our simple linear structural equation, the assumption that

𝑊 accounts for all confounding leads us to conclude that we

have

𝑌 = 𝛼𝐷 + 𝑔(𝑊) + 𝜀, E[𝜀 | 𝐷,𝑊] = 0 (0.0.2)

for some function 𝑔(𝑊). Thus, after all of our causal modeling

and assumptions, what remains is inference on a coefficient in

a possibly complex regression model of 𝑌 on 𝐷 and𝑊 , all of

them observed variables. That is, under our causal modeling and

assumptions, making statistical inferences (such as constructing

estimates and confidence intervals) on 𝛼 in Eq. (0.0.2) from data

on (𝑌, 𝐷,𝑊) would be causal inference. (0.0.1) is the simplest of

structural equations – to understand more complex structures

we consider systems of equations, and in Chapter 7 even nonlinear
structural equations.
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To explain how we power such causal inference with ML and

AI, let us now return to the question of what is 𝑊 in the first
place? There are many features we can observe about each toy

car on Amazon.com in addition to its price and sales: all the text

on the product page such as name and description, the product

subcategory (beyond being a toy), the brand, the color, and

the dimensions and weight of both the item and its packaging.

What features can we make use of, and how?

Classical methods, like OLS, (Chapter 1) allow us to conduct

inference on 𝛼 when Eq. (0.0.2) is a linear regression with

moderately high dimensions, that is, when𝑊 is a 𝑝-dimensional

random vector, 𝑔(𝑊) = 𝛽1 + 𝛽′
2
𝑊 , and 𝑝 is much smaller

than the number of observations we have (here, 9,212). Letting

𝑔(𝑊) = 𝛽1+𝛽′
2
𝑊 in Eq. (0.0.2) we obtain a linear model. There are

243 product subcategories for our toy cars. Consider identifying

each with a number in 1, . . . , 243 and letting 𝑊 be a 243-

dimensional vector with a 1 in the index corresponding to the

product’s subcategory and 0 elsewhere. OLS regression of 𝑌

on 𝐷 and this particular 𝑊 explains 7.5% of 𝑌’s variance (as

measured by adjusted 𝑅2
) and gives a 95% confidence interval

on 𝛼 of (−0.026, 0.036). These results are not very different from

what we inferred in the observed association between 𝑌 and 𝐷

without adjusting for any confounding effects, but at least the

upper bound is smaller – we indeed do not believe a positive

effect is realistic.

Perhaps we need to control for more confounding effects than

just subcategory membership. However, even without depart-

ing from linearity, OLS no longer provides reliable inference if

we include too many features in𝑊 . Letting 𝑔(𝑊) = 𝛽1 + 𝛽′
2
𝑊

in Eq. (0.0.2) with a high-dimensional 𝑊 , that is, where 𝑑 is

comparable to or bigger than the number of observations, we

obtain a linear model with high-dimensional controls. In Chapter 3,

we present more advanced ML methods than OLS: predictive

inference in high dimensions using regularized linear regres-

sion. The use of regularized linear regression may improve

prediction relative to OLS but introduces biases that imperil

inference on coefficients. In Chapter 4, we show how to remedy

this bias when making inferences on any one coefficient. In the

context of causal inference, this setup allows us to potentially

handle very many confounders, and the hope is that we can

then more reliably justify having accounted for all confounders.

In a nutshell, in the setting of Eq. (0.0.2), if we take �̃� and

�̃� to be the residuals from a modern high-dimensional linear

regression of 𝑌 on (1,𝑊) and of 𝐷 on (1,𝑊), respectively, then

OLS regression of �̃� on �̃� yields valid inference on 𝛼 even when
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3: One may include pre-specified
transformations of confounders as

well as discussed in Chapter 1.

4: Luckily, even if the partially lin-

ear assumption fails, estimates still

reflect some average of the causal
effects of increasing all prices by a

small amount, provided we have

accounted for all confounding ef-

fects in in𝑊 . See Remarks 9.2.2 and

9.3.3.

5: We will use these terms inter-

changeably and abbreviate them

with DML.

𝑊 is high-dimensional.

Consider letting𝑊 be a 11546 dimensional vector including not

only the indicator of subcategory but also the item’s physical

dimensions, transformed by log and expanded up to third

power of the logarithms, missingness indicators, the interaction

of these dimension features with subcategory, the indicator

of brand (among 1827 brands). In this case, 𝑝 is greater than

the number of observations 𝑛. Using the methods we present

in Chapter 4 to leverage this high-dimensional 𝑊 in this par-

ticular set up, we obtain a 95% confidence interval on 𝛼 of

(−0.10,−0.029). The confidence interval including only nega-

tive values is in concordance with the intuition that intervening

to increase price would decrease demand. At the same time,

we may still worry that a linear model is too restrictive, in

essence allowing us only to control linearly for pre-specified

confounders.
3

In Chapter 8, we present nonlinear ML methods for regression:

trees, ensembles, and neural nets. Compared to predicting log-

price and log-sales with LASSO, using these methods (with a

2083-dimensional feature vector omitting the expansions and

interactions needed for linear models) increases the 𝑅2
by 25-

53% and 89-189% (evaluated using 5-fold cross-validated 𝑅2
).

Clearly these methods offer significant predictive improvements

in this dataset. However, such nonlinear methods have no clear

parameter to extract, no coefficient to inspect. While making

excellent predictions, it is not immediately clear how to use

them to make valid statistical inferences on finite-dimensional

parameters, like average effects. We tackle that question in

Chapter 9. Letting 𝑔(𝑊) be an arbitrary nonlinear function in

Eq. (0.0.2) gives rise to what is called the partially linear model,
which strikes a nice balance between structure and flexibility:

the causal-effect part of the model is simple and interpretable –

for each unit increase in action we get 𝛼 increase in outcome

– while the confounding part, which we have no interest in

interpreting, can be almost-arbitrarily complex.
4

In the setting

of Eq. (0.0.2), it turns out we can keep the method of residual-

on-residual OLS inference, but using residuals from advanced

nonlinear regressions, as long as we fit these regressions on

parts of the data that exclude where we use them to make

predictions and produce the residuals. This is double machine
learning or debiased machine learning or double/debiased machine
learning5

for the partially linear model. Using DML together

with gradient-boosted-tree regression to make inferences on the

price elasticity 𝛼 in this example yields a confidence interval of

(−0.139,−0.074), suggesting an effect whose direction agrees
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even more strongly with our intuition, which can be attributed

to these more powerful predictive methods being able to better

account and correct for the confounding effects that pushed the

apparent direction upward.

It is still unclear, however, whether the numeric features we

observe can reliably capture all of the confounding effects – if

they cannot, then no regression, no matter how flexible, can help.

This problem – getting the right data to enable causal inference

– is a common challenge when dealing with observational data.

It is in using all the available data, where modern AI along with

the tools we develop in this book come together to uniquely

enable powerful causal inferences using modern observational

data sets. Modern data sets are rich, containing far more than

just numeric features. This data set, for example, contains text

on each product – descriptions that capture many important

features about each product that are not clearly tabulated but

must be inferred by reading the text. Luckily, modern AI has

made great inroads in recent years in machine cognition of text,

images, videos, and other rich data.

In Chapter 10, we discuss how these powerful tools can be used

in concert with DML. BERT is a large language model leveraging

a deep learning architecture known as transformers and achiev-

ing impressive performance on natural-language-processing

benchmarks. Using neural-net-based predictive models for log-

price and log-sales built on top of BERT results in a 12-37%

and 4-59% increase in cross-validated 𝑅2
, respectively, relative

to the nonlinear models using only numeric features in the

data. The non-numeric features in the data therefore seem to

account for more than the baseline numeric factors of products

in predicting price and sales. Using DML for the partially linear

model together with these models that use the non-numeric

features, we are able to make causal inferences that account for

confounding factors reflected in the rich text on the product

page for each toy car. Proceeding in this way, as we explain in

greater detail in Chapter 10, we obtain a confidence interval on

𝛼 of (−0.21,−0.13). That we get a more negative estimate here

again suggests that there were residual confounding effects

inducing a spurious positive relationship between price and

sales that we could only have controlled for and counteracted

by using AI to account for the rich text data.

While it is relatively easy to validate predictive models’ per-

formance by using held-out test sets and cross-validation, it is

difficult – impossible, even – to definitively validate a causal

effect, as it will inevitably rest on fundamentally untestable

assumptions. Nonetheless, we can have greater confidence in
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estimates that correctly and fully leverage the available data and

do not rely on unnecessary parametric assumptions. Estimates

based on DML on top of AI allow us to do just that. We can use

rich data without imposing strong functional form restrictions

and importantly can do so without imperiling guarantees on

valid statistical inference. The Core material outlines the basic

ideas and provides fundamental results for using DML with

AI learners to estimate and do inference for low-dimensional

causal effects.

The Advanced Topics section includes chapters that expand

upon the basic material from the Core chapters. In the Core

material, we discuss more complex structures than the partially

linear model introduced in this preview, but do inference essen-

tially only when all relevant variables are observed. In Chapter

12, we present alternative ways to identify causal effects when

we do not believe we observe all confounders – techniques

such as sensitivity analysis, instrumental variables, and proxy

controls, and we provide methods for causal inference in such

settings in Chapter 13. These tools allow us to have confidence in

causal estimates that leverage special structure like instruments

or proxies without additionally making unnecessary parametric

assumptions and with the ability to leverage rich data using

powerful AI. In many examples, one may wish to understand

heterogeneity in causal effects such as how causal effects differ

across observed predictors. Chapter 14 covers DML inference

on quantities that characterize this heterogeneity, and Chapter

15 goes beyond inference on low-dimensional causal parame-

ters and discusses learning heterogeneous causal effects from

rich individual-level data and even personalizing treatments

based on such data. Finally, we consider application of DML in

conjunction with two popular methods for identifying causal

effects – difference-in-differences and regression discontinuity

designs – in Chapter 16 and Chapter 17 respectively.

After studying the book, the reader should also be able to

understand and employ DML in many other applications that

are not explicitly covered. In the toy car example we focused

on sales, but sales may not reflect demand when we reach

the limits of on-hand inventory, something known as right-

censoring. Censoring is an example of data coarsening, and

mathematically it is not too dissimilar from the missingness of

potential outcomes for actions not taken. Similarly, we may want

to look at distributional effects beyond averages, like effects

on the quantiles of sales. DML can often be applied to these

problems and there is active research on applying it to ever

more intricate problems.
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There are also topics beyond our scope. We started by saying

we focus on the causal effect of an action on an outcome – a

broader yet much more challenging question is, among multiple

variables, discovering which have causal effects on which. While

we do discuss the use of directed acyclic graphs in Chapter 7 and

Chapter 11, we only use them to represent assumed structure

and only briefly mention how one might try to learn causal

structure directly from data, which is the subject of causal
discovery.

Our aim is rather focused: present the building blocks of pre-

dictive inference and of causal inference and illustrate their

effective and correct use in concert in a way that allows readers

to employ them in real, practical settings. The book interweaves

the two kinds of inference, with many real-data examples with

code notebooks. We hope the outcome is that we reach an

endpoint where the reader is ready to power causal inferences

with ML and AI and be able to draw valid, reliable inferences

in practice using rich modern data.


